• 同步锁基本原理与实现


      为充分利用机器性能,人们发明了多线程。但同时带来了线程安全问题,于是人们又发明了同步锁。

      这个问题自然人人知道,但你真的了解同步锁吗?还是说你会用其中的上锁与解锁功能?

      今天我们就一起来深入看同步锁的原理和实现吧!

    一、同步锁的职责

      同步锁的职责可以说就一个,限制资源的使用(线程安全从属)。

      它一般至少会包含两个功能: 1. 给资源加锁; 2. 给资源解锁;另外,它一般还有 等待/通知 即 wait/notify 的功能;

      同步锁的应用场景:多个线程同时操作一个事务必须保证正确性;一个资源只能同时由一线程访问操作;一个资源最多只能接入k的并发访问;保证访问的顺序性;

      同步锁的实现方式:操作系统调度实现;应用自行实现;CAS自旋;

      同步锁的几个问题:

        为什么它能保证线程安全?

        锁等待耗CPU吗?

        使用锁后性能下降严重的原因是啥?

    二、同步锁的实现一:lock/unlock

      其实对于应用层来说,非常多就是 lock/unlock , 这也是锁的核心。

      AQS 是java中很多锁实现的基础,因为它屏蔽了很多繁杂而底层的阻塞操作,为上层抽象出易用的接口。

      我们就以AQS作为跳板,先来看一下上锁的过程。为不至于陷入具体锁的业务逻辑中,我们先以最简单的 CountDownLatch 看看。

        // 先看看 CountDownLatch 的基础数据结构,可以说是不能再简单了,就继承了 AQS,然后简单覆写了几个必要方法。
        // java.util.concurrent.CountDownLatch.Sync
        /**
         * Synchronization control For CountDownLatch.
         * Uses AQS state to represent count.
         */
        private static final class Sync extends AbstractQueuedSynchronizer {
            private static final long serialVersionUID = 4982264981922014374L;
    
            Sync(int count) {
                setState(count);
            }
    
            int getCount() {
                return getState();
            }
    
            protected int tryAcquireShared(int acquires) {
                // 只有一种情况会获取锁成功,即 state == 0 的时候
                return (getState() == 0) ? 1 : -1;
            }
    
            protected boolean tryReleaseShared(int releases) {
                // Decrement count; signal when transition to zero
                for (;;) {
                    int c = getState();
                    if (c == 0)
                        return false;
                    // 原始的锁数量是在初始化时指定的不可变的,每次释放一个锁标识
                    int nextc = c-1;
                    if (compareAndSetState(c, nextc))
                        // 只有一情况会释放锁成功,即本次释放后 state == 0
                        return nextc == 0;
                }
            }
        }
        private final Sync sync;

    重点1,我们看看上锁过程,即 await() 的调用。

        public void await() throws InterruptedException {
            // 调用 AQS 的接口,由AQS实现了锁的骨架逻辑
            sync.acquireSharedInterruptibly(1);
        }
        
        // java.util.concurrent.locks.AbstractQueuedSynchronizer#acquireSharedInterruptibly
        /**
         * Acquires in shared mode, aborting if interrupted.  Implemented
         * by first checking interrupt status, then invoking at least once
         * {@link #tryAcquireShared}, returning on success.  Otherwise the
         * thread is queued, possibly repeatedly blocking and unblocking,
         * invoking {@link #tryAcquireShared} until success or the thread
         * is interrupted.
         * @param arg the acquire argument.
         * This value is conveyed to {@link #tryAcquireShared} but is
         * otherwise uninterpreted and can represent anything
         * you like.
         * @throws InterruptedException if the current thread is interrupted
         */
        public final void acquireSharedInterruptibly(int arg)
                throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            // 首先尝试获取锁,如果成功就不用阻塞了
            // 而从上面的逻辑我们看到,获取锁相当之简单,所以,获取锁本身并没有太多的性能消耗哟
            // 如果获取锁失败,则会进行稍后尝试,这应该是复杂而精巧的
            if (tryAcquireShared(arg) < 0)
                doAcquireSharedInterruptibly(arg);
        }
        
        /**
         * Acquires in shared interruptible mode.
         * @param arg the acquire argument
         */
        private void doAcquireSharedInterruptibly(int arg)
            throws InterruptedException {
            // 首先将当前线程添加排队队尾,此处会保证线程安全,稍后我们可以看到
            final Node node = addWaiter(Node.SHARED);
            boolean failed = true;
            try {
                for (;;) {
                    // 获取其上一节点,如果上一节点是头节点,就代表当前线程可以再次尝试获取锁了
                    final Node p = node.predecessor();
                    if (p == head) {
                        int r = tryAcquireShared(arg);
                        if (r >= 0) {
                            setHeadAndPropagate(node, r);
                            p.next = null; // help GC
                            failed = false;
                            return;
                        }
                    }
                    // 先检测是否需要阻塞,然后再进行阻塞等待,阻塞由 LockSupport 底层支持
                    // 如果阻塞后,将不会主动唤醒,只会由 unlock 时,主动被通知
                    // 因此,此处即是获取锁的最终等待点
                    // 操作系统将不会再次调度到本线程,直到获取到锁
                    if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt())
                        throw new InterruptedException();
                }
            } finally {
                if (failed)
                    cancelAcquire(node);
            }
        }
    
        // 如此线程安全地添加当前线程到队尾? CAS 保证
        /**
         * Creates and enqueues node for current thread and given mode.
         *
         * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
         * @return the new node
         */
        private Node addWaiter(Node mode) {
            Node node = new Node(Thread.currentThread(), mode);
            // Try the fast path of enq; backup to full enq on failure
            Node pred = tail;
            if (pred != null) {
                node.prev = pred;
                if (compareAndSetTail(pred, node)) {
                    pred.next = node;
                    return node;
                }
            }
            enq(node);
            return node;
        }
        /**
         * Inserts node into queue, initializing if necessary. See picture above.
         * @param node the node to insert
         * @return node's predecessor
         */
        private Node enq(final Node node) {
            for (;;) {
                Node t = tail;
                if (t == null) { // Must initialize
                    if (compareAndSetHead(new Node()))
                        tail = head;
                } else {
                    node.prev = t;
                    if (compareAndSetTail(t, node)) {
                        t.next = node;
                        return t;
                    }
                }
            }
        }
        
        // 检测是否需要进行阻塞
        /**
         * Checks and updates status for a node that failed to acquire.
         * Returns true if thread should block. This is the main signal
         * control in all acquire loops.  Requires that pred == node.prev.
         *
         * @param pred node's predecessor holding status
         * @param node the node
         * @return {@code true} if thread should block
         */
        private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
            int ws = pred.waitStatus;
            if (ws == Node.SIGNAL)
                /*
                 * This node has already set status asking a release
                 * to signal it, so it can safely park.
                 */
                 // 只有前置节点是 SIGNAL 状态的节点,才需要进行 阻塞等待,当然前置节点会在下一次循环中被设置好
                return true;
            if (ws > 0) {
                /*
                 * Predecessor was cancelled. Skip over predecessors and
                 * indicate retry.
                 */
                do {
                    node.prev = pred = pred.prev;
                } while (pred.waitStatus > 0);
                pred.next = node;
            } else {
                /*
                 * waitStatus must be 0 or PROPAGATE.  Indicate that we
                 * need a signal, but don't park yet.  Caller will need to
                 * retry to make sure it cannot acquire before parking.
                 */
                compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
            }
            return false;
        }
        
        // park 阻塞实现
        /**
         * Convenience method to park and then check if interrupted
         *
         * @return {@code true} if interrupted
         */
        private final boolean parkAndCheckInterrupt() {
            // 将当前 AQS 实例作为锁对象 blocker, 进行操作系统调用阻塞, 所以所有等待锁的线程将会在同一个锁前提下执行
            LockSupport.park(this);
            return Thread.interrupted();
        }

      如上,上锁过程是比较简单明了的。加入一队列,然后由操作系统将线程调出。(那么操作系统是如何把线程调出的呢?有兴趣自行研究)

    重点2. 解锁过程,即 countDown() 调用

        public void countDown() {
            // 同样直接调用 AQS 的接口,由AQS实现了锁的释放骨架逻辑
            sync.releaseShared(1);
        }
        // java.util.concurrent.locks.AbstractQueuedSynchronizer#releaseShared
        /**
         * Releases in shared mode.  Implemented by unblocking one or more
         * threads if {@link #tryReleaseShared} returns true.
         *
         * @param arg the release argument.  This value is conveyed to
         *        {@link #tryReleaseShared} but is otherwise uninterpreted
         *        and can represent anything you like.
         * @return the value returned from {@link #tryReleaseShared}
         */
        public final boolean releaseShared(int arg) {
            // 调用业务实现的释放逻辑,如果成功,再执行底层的释放,如队列移除,线程通知等等
            // 在 CountDownLatch 的实现中,只有 state == 0 时才会成功,所以它只会执行一次底层释放
            // 这也是我们认为 CountDownLatch 能够做到多线程同时执行的效果的原因之一
            if (tryReleaseShared(arg)) {
                doReleaseShared();
                return true;
            }
            return false;
        }
        
        /**
         * Release action for shared mode -- signals successor and ensures
         * propagation. (Note: For exclusive mode, release just amounts
         * to calling unparkSuccessor of head if it needs signal.)
         */
        private void doReleaseShared() {
            /*
             * Ensure that a release propagates, even if there are other
             * in-progress acquires/releases.  This proceeds in the usual
             * way of trying to unparkSuccessor of head if it needs
             * signal. But if it does not, status is set to PROPAGATE to
             * ensure that upon release, propagation continues.
             * Additionally, we must loop in case a new node is added
             * while we are doing this. Also, unlike other uses of
             * unparkSuccessor, we need to know if CAS to reset status
             * fails, if so rechecking.
             */
            for (;;) {
                Node h = head;
                // 队列不为空才进行释放
                if (h != null && h != tail) {
                    int ws = h.waitStatus;
                    // 看过上面的 lock 逻辑,我们知道只要在阻塞状态,一定是 Node.SIGNAL 
                    if (ws == Node.SIGNAL) {
                        // 状态改变成功,才进行后续的唤醒逻辑
                        // 因为先改变状态成功,才算是线程安全的,再进行唤醒,否则进入下一次循环再检查
                        if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                            continue;            // loop to recheck cases
                        // 将头节点的下一节点唤醒,如有必要
                        unparkSuccessor(h);
                    }
                    // 这里的 propagates, 是要传播啥呢??
                    // 为什么只唤醒了一个线程,其他线程也可以动了?
                    else if (ws == 0 &&
                             !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                        continue;                // loop on failed CAS
                }
                if (h == head)                   // loop if head changed
                    break;
            }
        }
        /**
         * Wakes up node's successor, if one exists.
         *
         * @param node the node
         */
        private void unparkSuccessor(Node node) {
            /*
             * If status is negative (i.e., possibly needing signal) try
             * to clear in anticipation of signalling.  It is OK if this
             * fails or if status is changed by waiting thread.
             */
            int ws = node.waitStatus;
            if (ws < 0)
                compareAndSetWaitStatus(node, ws, 0);
    
            /*
             * Thread to unpark is held in successor, which is normally
             * just the next node.  But if cancelled or apparently null,
             * traverse backwards from tail to find the actual
             * non-cancelled successor.
             */
            // 唤醒下一个节点
            // 但如果下一节点已经取消等待了,那么就找下一个没最近的没被取消的线程进行唤醒
            // 唤醒只是针对一个线程的哟
            Node s = node.next;
            if (s == null || s.waitStatus > 0) {
                s = null;
                for (Node t = tail; t != null && t != node; t = t.prev)
                    if (t.waitStatus <= 0)
                        s = t;
            }
            if (s != null)
                LockSupport.unpark(s.thread);
        }

    重要3. 线程解锁的传播性?

      因为从上一节的讲解中,我们看到,当用户调用 countDown 时,仅仅是让操作系统唤醒了 head 的下一个节点线程或者最近未取消的节点。那么,从哪里来的所有线程都获取了锁从而运行呢?

      其实是在 获取锁的过程中,还有一点我们未看清:

        // java.util.concurrent.locks.AbstractQueuedSynchronizer#doAcquireShared
        /**
         * Acquires in shared uninterruptible mode.
         * @param arg the acquire argument
         */
        private void doAcquireShared(int arg) {
            final Node node = addWaiter(Node.SHARED);
            boolean failed = true;
            try {
                boolean interrupted = false;
                for (;;) {
                    final Node p = node.predecessor();
                    if (p == head) {
                        // 当countDown被调用后,head节点被唤醒,执行
                        int r = tryAcquireShared(arg);
                        if (r >= 0) {
                            // 获取到锁后,设置node为下一个头节点,并把唤醒状态传播下去,而这里面肯定会做一些唤醒其他线程的操作,请看下文
                            setHeadAndPropagate(node, r);
                            p.next = null; // help GC
                            if (interrupted)
                                selfInterrupt();
                            failed = false;
                            return;
                        }
                    }
                    if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt())
                        interrupted = true;
                }
            } finally {
                if (failed)
                    cancelAcquire(node);
            }
        }
        
        /**
         * Sets head of queue, and checks if successor may be waiting
         * in shared mode, if so propagating if either propagate > 0 or
         * PROPAGATE status was set.
         *
         * @param node the node
         * @param propagate the return value from a tryAcquireShared
         */
        private void setHeadAndPropagate(Node node, int propagate) {
            Node h = head; // Record old head for check below
            setHead(node);
            /*
             * Try to signal next queued node if:
             *   Propagation was indicated by caller,
             *     or was recorded (as h.waitStatus either before
             *     or after setHead) by a previous operation
             *     (note: this uses sign-check of waitStatus because
             *      PROPAGATE status may transition to SIGNAL.)
             * and
             *   The next node is waiting in shared mode,
             *     or we don't know, because it appears null
             *
             * The conservatism in both of these checks may cause
             * unnecessary wake-ups, but only when there are multiple
             * racing acquires/releases, so most need signals now or soon
             * anyway.
             */
            if (propagate > 0 || h == null || h.waitStatus < 0 ||
                (h = head) == null || h.waitStatus < 0) {
                // 如果有必要,则做一次唤醒下一线程的操作
                // 在 countDown() 不会触发此操作,所以这里只是一个内部调用传播
                Node s = node.next;
                if (s == null || s.isShared())
                    // 此处锁释放逻辑如上,总之,又是另一次的唤醒触发
                    doReleaseShared();
            }
        }

      到此,我们明白了它是怎么做到一个锁释放,所有线程可通行的。也从根本上回答了我们猜想,所有线程同时并发运行。然而并没有,它只是通过唤醒传播性来依次唤醒各个等待线程的。从绝对时间性上来讲,都是有先后关系的。以后可别再浅显说是同时执行了哟。

    三、 锁的切换:wait/notify

      上面看出,针对一个lock/unlock 的过程还是很简单的,由操作系统负责大头,实现代码也并不多。

      但是针对稍微有点要求的场景,就会进行条件式的操作。比如:持有某个锁运行一段代码,但是,运行时发现某条件不满足,需要进行等待而不能直接结束,直到条件成立。即所谓的 wait 操作。

      乍一看,wait/notify 与 lock/unlock 很像,其实不然。区分主要是 lock/unlock 是针对整个代码段的,而 wait/notify 则是针对某个条件的,即获取了锁不代表条件成立了,但是条件成立了一定要在锁的前提下才能进行安全操作。

      那么,是否 wait/notify 也一样的实现简单呢?比如java的最基础类 Object 类就提供了 wait/notify 功能。

      我们既然想一探究竟,还是以并发包下的实现作为基础吧,毕竟 java 才是我们的强项。

      本次,咱们以  ArrayBlockingQueue#put/take 作为基础看下这种场景的使用先。

      ArrayBlockingQueue 的put/take 特性就是,put当队列满时,一直阻塞,直到有可用位置才继续运行下一步。而take当队列为空时一样阻塞,直到队列里有数据才运行下一步。这种场景使用锁主不好搞了,因为这是一个条件判断。put/take 如下:

        // java.util.concurrent.ArrayBlockingQueue#put
        /**
         * Inserts the specified element at the tail of this queue, waiting
         * for space to become available if the queue is full.
         *
         * @throws InterruptedException {@inheritDoc}
         * @throws NullPointerException {@inheritDoc}
         */
        public void put(E e) throws InterruptedException {
            checkNotNull(e);
            final ReentrantLock lock = this.lock;
            lock.lockInterruptibly();
            try {
                // 当队列满时,一直等待
                while (count == items.length)
                    notFull.await();
                enqueue(e);
            } finally {
                lock.unlock();
            }
        }
        
        // java.util.concurrent.ArrayBlockingQueue#take
        public E take() throws InterruptedException {
            final ReentrantLock lock = this.lock;
            lock.lockInterruptibly();
            try {
                // 当队列为空时一直等待
                while (count == 0)
                    notEmpty.await();
                return dequeue();
            } finally {
                lock.unlock();
            }
        }

      看起来相当简单,完全符合人类思维。只是,这里使用的两个变量进行控制流程 notFull,notEmpty. 这两个变量是如何进行关联的呢?

      在这之前,我们还需要补充下上面的例子,即 notFull.await(), notEmpty.await(); 被阻塞了,何时才能运行呢?如上代码在各自的入队和出队完成之后进行通知就可以了。

        // 与 put 对应,入队完成后,队列自然就不为空了,通知下 notEmpty 就好了
        /**
         * Inserts element at current put position, advances, and signals.
         * Call only when holding lock.
         */
        private void enqueue(E x) {
            // assert lock.getHoldCount() == 1;
            // assert items[putIndex] == null;
            final Object[] items = this.items;
            items[putIndex] = x;
            if (++putIndex == items.length)
                putIndex = 0;
            count++;
            // 我已放入一个元素,不为空了
            notEmpty.signal();
        }
        // 与 take 对应,出队完成后,自然就不可能是满的了,至少一个空余空间。
        /**
         * Extracts element at current take position, advances, and signals.
         * Call only when holding lock.
         */
        private E dequeue() {
            // assert lock.getHoldCount() == 1;
            // assert items[takeIndex] != null;
            final Object[] items = this.items;
            @SuppressWarnings("unchecked")
            E x = (E) items[takeIndex];
            items[takeIndex] = null;
            if (++takeIndex == items.length)
                takeIndex = 0;
            count--;
            if (itrs != null)
                itrs.elementDequeued();
            // 我已移除一个元素,肯定没有满了,你们继续放入吧
            notFull.signal();
            return x;
        }

      是不是超级好理解。是的。不过,我们不是想看 ArrayBlockingQueue 是如何实现的,我们是要论清 wait/notify 是如何实现的。因为毕竟,他们不是一个锁那么简单。

        // 三个锁的关系,即 notEmpty, notFull 都是 ReentrantLock 的条件锁,相当于是其子集吧
        /** Main lock guarding all access */
        final ReentrantLock lock;
    
        /** Condition for waiting takes */
        private final Condition notEmpty;
    
        /** Condition for waiting puts */
        private final Condition notFull;
        
        public ArrayBlockingQueue(int capacity, boolean fair) {
            if (capacity <= 0)
                throw new IllegalArgumentException();
            this.items = new Object[capacity];
            lock = new ReentrantLock(fair);
            notEmpty = lock.newCondition();
            notFull =  lock.newCondition();
        }
        // lock.newCondition() 是什么鬼?它是 AQS 中实现的 ConditionObject
        // java.util.concurrent.locks.ReentrantLock#newCondition
        public Condition newCondition() {
            return sync.newCondition();
        }
            // java.util.concurrent.locks.ReentrantLock.Sync#newCondition
            final ConditionObject newCondition() {
                // AQS 中定义
                return new ConditionObject();
            }

      接下来,我们要带着几个疑问来看这个 Condition 的对象:

        1. 它的 wait/notify 是如何实现的?
        2. 它是如何与互相进行联系的?
        3. 为什么 wait/notify 必须要在外面的lock获取之后才能执行?
        4. 它与Object的wait/notify 有什么相同和不同点?

      能够回答了上面的问题,基本上对其原理与实现也就理解得差不多了。

    重点1. wait/notify 是如何实现的?

      我们从上面可以看到,它是通过调用 await()/signal() 实现的,到底做事如何,且看下面。

            // java.util.concurrent.locks.AbstractQueuedSynchronizer.ConditionObject#await()
            /**
             * Implements interruptible condition wait.
             * <ol>
             * <li> If current thread is interrupted, throw InterruptedException.
             * <li> Save lock state returned by {@link #getState}.
             * <li> Invoke {@link #release} with saved state as argument,
             *      throwing IllegalMonitorStateException if it fails.
             * <li> Block until signalled or interrupted.
             * <li> Reacquire by invoking specialized version of
             *      {@link #acquire} with saved state as argument.
             * <li> If interrupted while blocked in step 4, throw InterruptedException.
             * </ol>
             */
            public final void await() throws InterruptedException {
                if (Thread.interrupted())
                    throw new InterruptedException();
                // 添加当前线程到 等待线程队列中,有 lastWaiter/firstWaiter 维护
                Node node = addConditionWaiter();
                // 释放当前lock中持有的锁,详情且看下文
                int savedState = fullyRelease(node);
                // 从以下开始,将不再保证线程安全性,因为当前的锁已经释放,其他线程将会重新竞争锁使用
                int interruptMode = 0;
                // 循环判定,如果当前节点不在 sync 同步队列中,那么就反复阻塞自己
                // 所以判断是否在 同步队列上,是很重要的
                while (!isOnSyncQueue(node)) {
                    // 没有在同步队列,阻塞
                    LockSupport.park(this);
                    if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                        break;
                }
                // 当条件被满足后,需要重新竞争锁,详情看下文
                // 竞争到锁后,原样返回到 wait 的原点,继续执行业务逻辑
                if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                    interruptMode = REINTERRUPT;
                // 下面是异常处理,忽略
                if (node.nextWaiter != null) // clean up if cancelled
                    unlinkCancelledWaiters();
                if (interruptMode != 0)
                    reportInterruptAfterWait(interruptMode);
            }
        /**
         * Invokes release with current state value; returns saved state.
         * Cancels node and throws exception on failure.
         * @param node the condition node for this wait
         * @return previous sync state
         */
        final int fullyRelease(Node node) {
            boolean failed = true;
            try {
                int savedState = getState();
                // 预期的,都是释放锁成功,如果失败,说明当前线程并并未获取到锁,引发异常
                if (release(savedState)) {
                    failed = false;
                    return savedState;
                } else {
                    throw new IllegalMonitorStateException();
                }
            } finally {
                if (failed)
                    node.waitStatus = Node.CANCELLED;
            }
        }
        /**
         * Releases in exclusive mode.  Implemented by unblocking one or
         * more threads if {@link #tryRelease} returns true.
         * This method can be used to implement method {@link Lock#unlock}.
         *
         * @param arg the release argument.  This value is conveyed to
         *        {@link #tryRelease} but is otherwise uninterpreted and
         *        can represent anything you like.
         * @return the value returned from {@link #tryRelease}
         */
        public final boolean release(int arg) {
            // tryRelease 由客户端自定义实现
            if (tryRelease(arg)) {
                Node h = head;
                if (h != null && h.waitStatus != 0)
                    unparkSuccessor(h);
                return true;
            }
            return false;
        }
        
        // 如何判定当前线程是否在同步队列中或者可以进行同步队列?
        /**
         * Returns true if a node, always one that was initially placed on
         * a condition queue, is now waiting to reacquire on sync queue.
         * @param node the node
         * @return true if is reacquiring
         */
        final boolean isOnSyncQueue(Node node) {
            // 如果上一节点还没有被移除,当前节点就不能被加入到同步队列
            if (node.waitStatus == Node.CONDITION || node.prev == null)
                return false;
            // 如果当前节点的下游节点已经存在,则它自身必定已经被移到同步队列中
            if (node.next != null) // If has successor, it must be on queue
                return true;
            /*
             * node.prev can be non-null, but not yet on queue because
             * the CAS to place it on queue can fail. So we have to
             * traverse from tail to make sure it actually made it.  It
             * will always be near the tail in calls to this method, and
             * unless the CAS failed (which is unlikely), it will be
             * there, so we hardly ever traverse much.
             */
             // 最终直接从同步队列中查找,如果找到,则自身已经在同步队列中
            return findNodeFromTail(node);
        }
    
        /**
         * Returns true if node is on sync queue by searching backwards from tail.
         * Called only when needed by isOnSyncQueue.
         * @return true if present
         */
        private boolean findNodeFromTail(Node node) {
            Node t = tail;
            for (;;) {
                if (t == node)
                    return true;
                if (t == null)
                    return false;
                t = t.prev;
            }
        }
        
        // 当条件被满足后,需要重新竞争锁,以保证外部的锁语义,因为之前自己已经将锁主动释放
        // 这个锁与 lock/unlock 时的一毛一样,没啥可讲的
        // java.util.concurrent.locks.AbstractQueuedSynchronizer#acquireQueued
        /**
         * Acquires in exclusive uninterruptible mode for thread already in
         * queue. Used by condition wait methods as well as acquire.
         *
         * @param node the node
         * @param arg the acquire argument
         * @return {@code true} if interrupted while waiting
         */
        final boolean acquireQueued(final Node node, int arg) {
            boolean failed = true;
            try {
                boolean interrupted = false;
                for (;;) {
                    final Node p = node.predecessor();
                    if (p == head && tryAcquire(arg)) {
                        setHead(node);
                        p.next = null; // help GC
                        failed = false;
                        return interrupted;
                    }
                    if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt())
                        interrupted = true;
                }
            } finally {
                if (failed)
                    cancelAcquire(node);
            }
        }

      总结一下 wait 的逻辑:

        1. 前提:自身已获取到外部锁;
        2. 将当前线程添加到 ConditionQueue 等待队列中;
        3. 释放已获取到的锁;
        4. 反复检查进入等待,直到当前节点被移动到同步队列中;
        5. 条件满足被唤醒,重新竞争外部锁,成功则返回,否则继续阻塞;(外部锁是同一个,这也是要求两个对象必须存在依赖关系的原因)
        6. wait前线程持有锁,wait后线程持有锁,没有一点外部锁变化;

    重点2. 厘清了 wait, 接下来,我们看 signal() 通知唤醒的实现:

            // java.util.concurrent.locks.AbstractQueuedSynchronizer.ConditionObject#signal
            /**
             * Moves the longest-waiting thread, if one exists, from the
             * wait queue for this condition to the wait queue for the
             * owning lock.
             *
             * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
             *         returns {@code false}
             */
            public final void signal() {
                // 只有获取锁的实例,才可以进行signal,否则你拿什么去保证线程安全呢
                if (!isHeldExclusively())
                    throw new IllegalMonitorStateException();
                Node first = firstWaiter;
                // 通知 firstWaiter 
                if (first != null)
                    doSignal(first);
            }
            
            /**
             * Removes and transfers nodes until hit non-cancelled one or
             * null. Split out from signal in part to encourage compilers
             * to inline the case of no waiters.
             * @param first (non-null) the first node on condition queue
             */
            private void doSignal(Node first) {
                // 最多只转移一个 节点
                do {
                    if ( (firstWaiter = first.nextWaiter) == null)
                        lastWaiter = null;
                    first.nextWaiter = null;
                } while (!transferForSignal(first) &&
                         (first = firstWaiter) != null);
            }
        // 将一个节点从 等待队列 移动到 同步队列中,即可参与下一轮竞争
        // 只有确实移动成功才会返回 true
        // 说明:当前线程是持有锁的线程
        // java.util.concurrent.locks.AbstractQueuedSynchronizer#transferForSignal
        /**
         * Transfers a node from a condition queue onto sync queue.
         * Returns true if successful.
         * @param node the node
         * @return true if successfully transferred (else the node was
         * cancelled before signal)
         */
        final boolean transferForSignal(Node node) {
            /*
             * If cannot change waitStatus, the node has been cancelled.
             */
            if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
                return false;
    
            /*
             * Splice onto queue and try to set waitStatus of predecessor to
             * indicate that thread is (probably) waiting. If cancelled or
             * attempt to set waitStatus fails, wake up to resync (in which
             * case the waitStatus can be transiently and harmlessly wrong).
             */
            // 同步队列由 head/tail 指针维护
            Node p = enq(node);
            int ws = p.waitStatus;
            // 注意,此处正常情况下并不会唤醒等待线程,仅是将队列转移。 
            // 因为当前线程的锁保护区域并未完成,完成后自然会唤醒其他等待线程
            // 否则将会存在当前线程任务还未执行完成,却被其他线程抢了先去,那接下来的任务当如何??
            if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
                LockSupport.unpark(node.thread);
            return true;
        }

      总结一下,notify 的功能原理如下:

        1. 前提:自身已获取到外部锁;
        2. 转移下一个等待队列的节点到同步队列中;
        3. 如果遇到下一节点被取消情况,顺延到再下一节点直到为空,至多转移一个节点;
        4. 正常情况下不做线程的唤醒操作;

      所以,实现 wait/notify, 最关键的就是维护两个队列,等待队列与同步队列,而且都要求是在有外部锁保证的情况下执行。

      到此,我们也能回答一个问题:为什么wait/notify一定要在锁模式下才能运行?

      因为wait是等待条件成立,此时必定存在竞争需要做保护,而它自身又必须释放锁以使外部条件可成立,且后续需要做恢复动作;而notify之后可能还有后续工作必须保障安全,notify只是锁的一个子集。。。

    四、通知所有线程的实现:notifyAll

      有时条件成立后,可以允许所有线程通行,这时就可以进行 notifyAll, 那么如果达到通知所有的目的呢?是一起通知还是??

      以下是 AQS 中的实现:

            // java.util.concurrent.locks.AbstractQueuedSynchronizer.ConditionObject#signalAll
            public final void signalAll() {
                if (!isHeldExclusively())
                    throw new IllegalMonitorStateException();
                Node first = firstWaiter;
                if (first != null)
                    doSignalAll(first);
            }
            /**
             * Removes and transfers all nodes.
             * @param first (non-null) the first node on condition queue
             */
            private void doSignalAll(Node first) {
                lastWaiter = firstWaiter = null;
                do {
                    Node next = first.nextWaiter;
                    first.nextWaiter = null;
                    transferForSignal(first);
                    first = next;
                } while (first != null);
            }

      可以看到,它是通过遍历所有节点,依次转移等待队列到同步队列(通知)的,原本就没有人能同时干几件事的!

      本文从java实现的角度去解析同步锁的原理与实现,但并不局限于java。道理总是相通的,只是像操作系统这样的大佬,能干的活更纯粹:比如让cpu根本不用调度一个线程。

  • 相关阅读:
    win7 安装 redis +php扩展
    HTTP Status 500
    浅谈java8新特性之stream
    关于排序算法中的稳定与不稳定
    关于面试中的mysql试题1
    mysql关于case-when-end的使用
    eclipse项目启动报:Project facet Java version 1.8 is not supported
    mysql 5.7密码报错 ERROR 1820 (HY000): You must reset your password using ALTER USER statement before executing this statement.
    浅谈并行与并发
    浅谈Java垃圾回收(GC)
  • 原文地址:https://www.cnblogs.com/yougewe/p/11922194.html
Copyright © 2020-2023  润新知