http://www.lydsy.com/JudgeOnline/problem.php?id=4007
搜索。
暴力出奇迹。
发现我一遇到难题手就不由自主地点开了题解~~~~~~~~~~OTATO~~~~~~~~~~~~~~~~~~~~~
这种方法特别神奇,看着时间复杂度好像很大的样子,其实算着算着就很小了,而且很有DP的味道。
我们一想到搜索就以为是枚举所有的点的状态,即2^1023,其实不然,我们发现对于一个点,如果这个点到根的路径上所有祖先的状态【战争/后勤】已经确定了,不管左子树的状态是怎样,对右子树的最优答案都是没有影响的;同样,不管右子树的状态是怎样,对于左子树的最优答案也是没有影响的,也就是说左右子树是相互独立的,这一点非常重要,我们可以并列地枚举左右子树的状态,不是先枚举左子树状态后枚举右子树状态,这样就把”乘法原理“变成了”加法原理"。
#include<cstdio> #include<cstdlib> #include<iostream> #include<fstream> #include<algorithm> #include<cstring> #include<string> #include<cmath> #include<queue> #include<stack> #include<map> #include<utility> #include<set> #include<bitset> #include<vector> #include<functional> #include<deque> #include<cctype> #include<climits> #include<complex> //#include<bits/stdc++.h>适用于CF,UOJ,但不适用于poj using namespace std; typedef long long LL; typedef double DB; typedef pair<int,int> PII; typedef complex<DB> CP; #define mmst(a,v) memset(a,v,sizeof(a)) #define mmcy(a,b) memcpy(a,b,sizeof(a)) #define fill(a,l,r,v) fill(a+l,a+r+1,v) #define re(i,a,b) for(i=(a);i<=(b);i++) #define red(i,a,b) for(i=(a);i>=(b);i--) #define ire(i,x) for(typedef(x.begin()) i=x.begin();i!=x.end();i++) #define fi first #define se second #define m_p(a,b) make_pair(a,b) #define p_b(a) push_back(a) #define SF scanf #define PF printf #define two(k) (1<<(k)) template<class T>inline T sqr(T x){return x*x;} template<class T>inline void upmin(T &t,T tmp){if(t>tmp)t=tmp;} template<class T>inline void upmax(T &t,T tmp){if(t<tmp)t=tmp;} const DB EPS=1e-9; inline int sgn(DB x){if(abs(x)<EPS)return 0;return(x>0)?1:-1;} const DB Pi=acos(-1.0); inline int gint() { int res=0;bool neg=0;char z; for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar()); if(z==EOF)return 0; if(z=='-'){neg=1;z=getchar();} for(;z!=EOF && isdigit(z);res=res*10+z-'0',z=getchar()); return (neg)?-res:res; } inline LL gll() { LL res=0;bool neg=0;char z; for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar()); if(z==EOF)return 0; if(z=='-'){neg=1;z=getchar();} for(;z!=EOF && isdigit(z);res=res*10+z-'0',z=getchar()); return (neg)?-res:res; } const int maxN=10; int N,M; int a[two(maxN)+100][maxN+10][2]; int s[two(maxN)+100]; int F[two(maxN)+100][two(maxN)+100]; int res; inline void DFS(int cen,int rt) { if(cen==N) { int i,p=rt; F[rt][0]=F[rt][1]=0; re(i,1,N-1)p/=2,F[rt][s[p]]+=a[rt][i][s[p]]; return; } int i,j; re(i,0,two(N-cen))F[rt][i]=0; s[rt]=0; DFS(cen+1,rt*2); DFS(cen+1,rt*2+1); re(i,0,two(N-cen))re(j,0,two(N-cen)-i)upmax(F[rt][i+j],F[rt*2][i]+F[rt*2+1][j]); s[rt]=1; DFS(cen+1,rt*2); DFS(cen+1,rt*2+1); re(i,0,two(N-cen))re(j,0,two(N-cen)-i)upmax(F[rt][i+j],F[rt*2][i]+F[rt*2+1][j]); } int main() { freopen("bzoj4007.in","r",stdin); freopen("bzoj4007.out","w",stdout); int i,j; N=gint(),M=gint(); re(i,two(N-1),two(N)-1)re(j,1,N-1)a[i][j][1]=gint(); re(i,two(N-1),two(N)-1)re(j,1,N-1)a[i][j][0]=gint(); DFS(1,1); res=0; re(i,0,M)upmax(res,F[1][i]); cout<<res<<endl; return 0; }