• 40. Combination Sum II


    Given a collection of candidate numbers (candidates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.

    Each number in candidates may only be used once in the combination.

    Note:

    • All numbers (including target) will be positive integers.
    • The solution set must not contain duplicate combinations.

    Example 1:

    Input: candidates = [10,1,2,7,6,1,5], target = 8,
    A solution set is:
    [
      [1, 7],
      [1, 2, 5],
      [2, 6],
      [1, 1, 6]
    ]
    

    Example 2:

    Input: candidates = [2,5,2,1,2], target = 5,
    A solution set is:
    [
      [1,2,2],
      [5]
    ]

    比起上个题多了个条件,结果不能重复,并且给定的元素有重复;
    解决办法,在dfs的每层循环添加元素时,判断和前一个是不是相等,相等则不添加;

    class Solution {
    public:
        vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
            sort(candidates.begin(),candidates.end());
            vector<vector<int>> res;
            vector<int> tmp;
            dfs(res,tmp,target,candidates,0);
            return res;
        }
        
        void dfs(vector<vector<int>> &res, vector<int> &tmp, int target, vector<int> &candidates, int index)
        {
            if(0==target)
            {
                res.push_back(tmp);
                return;
            }
            
            for(int i=index;i<candidates.size()&&candidates[i]<=target;++i) //注意加上 candidates<=targe, 否则容易超时
            {
                if(i!=index&&candidates[i]==candidates[i-1])continue;
                tmp.push_back(candidates[i]);
                dfs(res,tmp,target-candidates[i], candidates,i+1);
                tmp.pop_back();
            }
        }
    };
  • 相关阅读:
    BZOJ3779: 重组病毒
    BZOJ3112 [ZJOI2013]防守战线
    BZOJ4011 [HNOI2015]落忆枫音
    BZOJ2726 [SDOI2012]任务安排
    BZOJ1492 [NOI2007]货币兑换
    BZOJ1597 [USACO2008]土地购买
    BZOJ3611 [HEOI2014]大工程
    BZOJ3991 [SDOI2015]寻宝游戏
    BZOJ3675 [APIO2014]序列分割
    BZOJ1010 [HNOI2008]玩具装箱
  • 原文地址:https://www.cnblogs.com/lychnis/p/11704893.html
Copyright © 2020-2023  润新知