• 计算机视觉(四)


    坐标变换与视觉测量
      
    给我一个摄像头,我可以用它来丈量天下

    一。特征点检测:

      

    二。成像:相机几何模型

      成像原理:

      

      

      产生的畸变问题:

      蓝色区域产生红边:

      产生暗角(复古风格、老照片):

      

    解决方法:减少畸变、花钱买镜头。

    三、坐标系统转换(2D-2D,3D-3D)

    四、相机标定

      齐次坐标系 在相机坐标系下去描述一个世界坐标系的物体

     

       相机的标定主要是求取相机的内参和外参,从而求得相机的旋转加平移

       相机标定的过程:从世界坐标系的物体通过相机刚体变换、变换到相机坐标系、通过透视投影得到我们的投影坐标系、通过畸变校正得到一副真实的图像坐标系,这样我们就得到无畸变的图像。

      

      

      标定在opencv中如何实现   

           http://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html 

       标定在Matlab中标定箱如何实现 

        http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#parameters

     

    五、Project : Simple  AR

       

      

    ////////////////////////////////////////////////////////////////////
    // File includes:
    #include "ARDrawingContext.hpp"
    #include "ARPipeline.hpp"
    #include "DebugHelpers.hpp"
    
    ////////////////////////////////////////////////////////////////////
    // Standard includes:
    #include <opencv2/opencv.hpp>
    #include <windows.h>//Alvin
    #include <gl/gl.h>
    #include <gl/glu.h>
    /**
     * Processes a recorded video or live view from web-camera and allows you to adjust homography refinement and 
     * reprojection threshold in runtime.
     */
    void processVideo(const cv::Mat& patternImage, CameraCalibration& calibration, cv::VideoCapture& capture);
    
    /**
     * Processes single image. The processing goes in a loop.
     * It allows you to control the detection process by adjusting homography refinement switch and 
     * reprojection threshold in runtime.
     */
    void processSingleImage(const cv::Mat& patternImage, CameraCalibration& calibration, const cv::Mat& image);
    
    /**
     * Performs full detection routine on camera frame and draws the scene using drawing context.
     * In addition, this function draw overlay with debug information on top of the AR window.
     * Returns true if processing loop should be stopped; otherwise - false.
     */
    bool processFrame(const cv::Mat& cameraFrame, ARPipeline& pipeline, ARDrawingContext& drawingCtx);
    
    int main(int argc, const char * argv[])
    {
        // Change this calibration to yours:
        //CameraCalibration calibration(215.34823346868020f, 215.34823346868020f, 639.50000000000000f, 479.50000000000000f);
        //CameraCalibration calibration(884.90606895184135f, 884.90606895184135f, 319.50000000000000f, 239.50000000000000f);//fx,fy,cx,cy
        CameraCalibration calibration(651.54400468036533f, 651.54400468036533f, 319.50000000000000f, 239.50000000000000f);
    
        //1, load pattern and test images
        argc = 3;
        argv[0] = "marklessAr";
        argv[1] = "PyramidPattern.jpg";
        argv[2] = "PyramidPatternTest.bmp";
    
        ////2, load a pattern and open a webcam
        //argc = 2;
        //argv[0] = "realtimeAR";
        //argv[1] = "pattern.bmp";
        if (argc < 2)
        {
            std::cout << "Input image not specified" << std::endl;
            std::cout << "Usage: markerless_ar_demo <pattern image> [filepath to recorded video or image]" << std::endl;
            return 1;
        }
    
        // Try to read the pattern:
        cv::Mat patternImage = cv::imread(argv[1]);
        if (patternImage.empty())
        {
            std::cout << "Input image cannot be read" << std::endl;
            return 2;
        }
    
        if (argc == 2)
        {
            processVideo(patternImage, calibration, cv::VideoCapture(0));
        }
        else if (argc == 3)
        {
            std::string input = argv[2];
            cv::Mat testImage = cv::imread(input);
            if (!testImage.empty())
            {
                processSingleImage(patternImage, calibration, testImage);
            }
            else 
            {
                cv::VideoCapture cap;
                if (cap.open(input))
                {
                    processVideo(patternImage, calibration, cap);
                }
            }
        }
        else
        {
            std::cerr << "Invalid number of arguments passed" << std::endl;
            return 1;
        }
    
        return 0;
    }
    
    void processVideo(const cv::Mat& patternImage, CameraCalibration& calibration, cv::VideoCapture& capture)
    {
        // Grab first frame to get the frame dimensions
        cv::Mat currentFrame;  
        capture >> currentFrame;
    
        // Check the capture succeeded:
        if (currentFrame.empty())
        {
            std::cout << "Cannot open video capture device" << std::endl;
            return;
        }
    
        cv::Size frameSize(currentFrame.cols, currentFrame.rows);
    
        ARPipeline pipeline(patternImage, calibration);
        ARDrawingContext drawingCtx("Markerless AR", frameSize, calibration);
    
        bool shouldQuit = false;
        do
        {
            capture >> currentFrame;
            if (currentFrame.empty())
            {
                shouldQuit = true;
                continue;
            }
    
            shouldQuit = processFrame(currentFrame, pipeline, drawingCtx);
        } while (!shouldQuit);
    }
    
    void processSingleImage(const cv::Mat& patternImage, CameraCalibration& calibration, const cv::Mat& image)
    {
        cv::Size frameSize(image.cols, image.rows);
        ARPipeline pipeline(patternImage, calibration);
        ARDrawingContext drawingCtx("Markerless AR", frameSize, calibration);
    
        bool shouldQuit = false;
        do
        {
            shouldQuit = processFrame(image, pipeline, drawingCtx);
        } while (!shouldQuit);
    }
    
    bool processFrame(const cv::Mat& cameraFrame, ARPipeline& pipeline, ARDrawingContext& drawingCtx)
    {
        // Clone image used for background (we will draw overlay on it)
        cv::Mat img = cameraFrame.clone();
    
        // Draw information:
        if (pipeline.m_patternDetector.enableHomographyRefinement)
            cv::putText(img, "Pose refinement: On   ('h' to switch off)", cv::Point(10,15), CV_FONT_HERSHEY_PLAIN, 1, CV_RGB(0,200,0));
        else
            cv::putText(img, "Pose refinement: Off  ('h' to switch on)",  cv::Point(10,15), CV_FONT_HERSHEY_PLAIN, 1, CV_RGB(0,200,0));
    
        cv::putText(img, "RANSAC threshold: " + ToString(pipeline.m_patternDetector.homographyReprojectionThreshold) + "( Use'-'/'+' to adjust)", cv::Point(10, 30), CV_FONT_HERSHEY_PLAIN, 1, CV_RGB(0,200,0));
    
        // Set a new camera frame:
        drawingCtx.updateBackground(img);
    
        // Find a pattern and update it's detection status:
        drawingCtx.isPatternPresent = pipeline.processFrame(cameraFrame);
    
        // Update a pattern pose:
        drawingCtx.patternPose = pipeline.getPatternLocation();
    
        // Request redraw of the window:
        drawingCtx.updateWindow();
    
        // Read the keyboard input:
        int keyCode = cv::waitKey(5); 
    
        bool shouldQuit = false;
        if (keyCode == '+' || keyCode == '=')
        {
            pipeline.m_patternDetector.homographyReprojectionThreshold += 0.2f;
            pipeline.m_patternDetector.homographyReprojectionThreshold = min(10.0f, pipeline.m_patternDetector.homographyReprojectionThreshold);
        }
        else if (keyCode == '-')
        {
            pipeline.m_patternDetector.homographyReprojectionThreshold -= 0.2f;
            pipeline.m_patternDetector.homographyReprojectionThreshold = max(0.0f, pipeline.m_patternDetector.homographyReprojectionThreshold);
        }
        else if (keyCode == 'h')
        {
            pipeline.m_patternDetector.enableHomographyRefinement = !pipeline.m_patternDetector.enableHomographyRefinement;
        }
        else if (keyCode == 27 || keyCode == 'q')
        {
            shouldQuit = true;
        }
    
        return shouldQuit;
    }

    结果是:

      

        

  • 相关阅读:
    洛谷P1272 重建道路
    uva 10004
    uva10305
    uva 10044
    uva 120
    uva699
    uva297
    uva11111
    uva 101
    uva10152 ShellSort
  • 原文地址:https://www.cnblogs.com/lvxiaoning/p/10076316.html
Copyright © 2020-2023  润新知