调和级数定义为
\[\frac{z}{1} + \frac{z^2}{2} + \frac{z^3}{3} + \cdots + \frac{z^n}{n} + \cdots
\]
下面分析它在复平面上的敛散性。
1 收敛半径
\[\lim_{n \rightarrow \infty} |\frac{c_{n+1}}{c_n}| = \lim_{n\rightarrow \infty} \frac{1/(n+1)}{1/n} = 1 = \frac{1}{R},
\]
所以收敛半径为 \(R = 1\)。单位圆\(|z|=1\)上各点的敛散性如何?:
2 \(z = 1\) 时级数是发散的:
\[1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots \\
= 1 + \frac{1}{2} + ( \frac{1}{3}+\frac{1}{4}) + \cdots + ( \frac{1}{2^n+1} + \cdots + \frac{1}{2^{n+1}}) + \cdots \\
> 1 + \frac{1}{2} + (\frac{1}{4} + \frac{1}{4}) + \cdots + ( \frac{1}{2^{n+1}} * 2^n ) + \cdots \\
= 1 + \frac{1}{2} + \frac{1}{2} + \cdots + \frac{1}{2} + \cdots 发散
\]
3 $ |z|=1, z \neq 1$ 时如何?
3.1 阿贝尔引理
阿贝尔引理:
\(\{a_n\} , \{b_n\}\) 是两个数列,定义 \(\{b_n\}\)的前\(n\)项和\(B_n = \sum^n_{i=1}b_i\)。
若有①\(\{a_n\}\)单调②\(\{B_k\}\)有界,即 \(\forall k, |B_k| \leq M\),
则有
\[|\sum^n_{k=1} a_k b_k | \leq M ( |a_1| + 2 | a_n |).
\]
证明:
\[\sum^n_{k=1} a_k b_k = \sum^n_{k=1} a_k (B_k - B_{k-1}) = \sum^n_{k=1} a_k B_k - \sum^{n-1}_{k=1} a_{k+1}B_k \\
= a_n B_n - \sum^{n-1}_{k=1}(a_{k+1}-a_k)B_k,
\]
所以有
\[|\sum^n_{k=1}a_k b_k | \leq |a_n B_n| + |\sum^{n-1}_{k=1}(a_{k+1}-a_k)B_k|\\
\leq M |a_n| + M \sum^{n-1}_{k=1} |a_{k+1} - a_k| (因为\{B_n\}有界) \\
\leq M |a_n| + M( |a_n| + |a_1|) (因为\{a_n\}单调) \\
= M( |a_1| + 2|a_n|)
\]
3.2 狄利克雷判别法
若有:① \(\{a_n\}\)单调且趋于0, ②\(\sum^n_{i=1}b_i\)有界,即\(\exists M\) s.t. \(\forall n, |\sum^n_{i=1}b_i|\leq M\);
则有: \(\sum^\infty_{n=1}a_n b_n\) 收敛。
证明:\(\forall p \in Z^+\),构造 \(B_n = \sum^{n+p}_{i=n+1}, n=1,2,3,\cdots\),则
\[|B_k| = |\sum^{k+p}_{i=k+1} b_i | = |\sum^{k+p}_{i=1}b_i - \sum^k_{i=1}b_i | \leq |\sum^{k+p}_{i=1}b_i| + |\sum^k_{i=1}b_i| \leq 2M,
\]
\(\forall \epsilon >0, \exists N\), s.t. \(n>N\) 时有\(|a_n| < \frac{\epsilon}{6M}\),根据阿贝尔引理有
\[| \sum^{n+p}_{k=n+1} a_k b_k | \leq 2M (|a_{n+1}| + 2|a_{n+p}|) < 2M \frac{\epsilon}{6M} 3 = \epsilon,
\]
这个结论对任意正整数 \(p\) 都成立,说明 \(|\sum^\infty_{k=n+1}a_kb_k| < \epsilon\),即 \(\sum^\infty_{k=1}a_kb_k\)收敛。
3.3 应用在调和级数
在调和级数中,取 \(\{a_n = \frac{1}{n}\}, \{b_n = z^n\}\),在 \(|z|=1, z\neq1\)时,即\(z = e^{i\theta}, \theta \in (0, 2\pi)\)。此时 \(\sum^n_{k=1}b_k\)有界,说明如下。
\[ z + z^2 + \cdots = (\cos \theta + i \sin \theta) + (\cos 2\theta + i \sin 2\theta) + \cdots\\
+ (\cos n \theta + i \sin n \theta) + \cdots \\
= (\cos \theta + \cos 2 \theta + \cdots + \cos n \theta + \cdots ) + i(\sin \theta + \sin 2 \theta + \cdots + \sin n \theta + \cdots)
\]
\[2\sin \frac{\theta}{2} ( \sum^n_{k=1} \cos k \theta ) = (\sin \frac{3}{2}\theta - \sin \frac{\theta}{2} ) + (\sin \frac{5}{2}\theta - \sin \frac{3}{2}\theta) + \cdots \\
= \sin (n+\frac{1}{2}\theta) - \sin \frac{\theta}{2}
\]
\[| \sum^n_{k=1}\cos k\theta| = | \frac{ \sin(n+\frac{1}{2})\theta - \sin \frac{\theta}{2} }{2\sin\frac{\theta}{2}}| \leq |\frac{1}{\sin \frac{\theta}{2}}| 有界
\]
类似地,可以说明 \(\sum^n_{k=1} \sin k\theta\) 有界:
\[2\sin \frac{\theta}{2} (\sum^n_{k=1} \cos k\theta) = (\cos \frac{\theta}{2} - \cos \frac{3}{2}\theta ) + \cdots
= \cos \frac{\theta}{2} - \cos(n+\frac{1}{2})\theta, \\
|\sum^n_{k=1}\cos k \theta| = | \frac{ \cos \frac{\theta}{2} - \cos(n+\frac{1}{2})\theta }{2\sin \frac{\theta}{2}}| \leq |\frac{1}{\sin \frac{\theta}{2}}|有界
\]
因此, \(\sum^n_{k=1} b_k = \sum^n_{k=1} \cos k\theta + i \sum^n_{k=1}\sin k \theta\) 有界。
所以,可以使用狄利克雷判别法,推断:\(\sum^\infty_{k=1} a_k b_k = \sum^\infty_{k=1} \frac{z^k}{k}\)在 \(|z|=1, z\neq 0\)时收敛。
4. 鸣谢
一类复幂级数在收敛圆周上敛散性讨论:https://m.doc88.com/p-7187673804181.html?r=1#
阿贝尔引理:https://zhuanlan.zhihu.com/p/350403597
狄利克雷判别法:https://zhuanlan.zhihu.com/p/350403734