model.pb下载
#include<fstream>
#include<utility>
#include<Eigen/Core>
#include<Eigen/Dense>
#include<string>
#include<tensorflow/cc/ops/const_op.h>
#include<tensorflow/cc/ops/image_ops.h>
#include<tensorflow/cc/ops/standard_ops.h>
#include<tensorflow/core/framework/graph.pb.h>
#include<tensorflow/core/graph/default_device.h>
#include<tensorflow/core/framework/tensor.h>
#include<tensorflow/core/graph/graph_def_builder.h>
#include<tensorflow/core/lib/core/errors.h>
#include<tensorflow/core/lib/core/stringpiece.h>
#include<tensorflow/core/lib/core/threadpool.h>
#include<tensorflow/core/lib/io/path.h>
#include<tensorflow/core/lib/strings/stringprintf.h>
#include<tensorflow/core/platform/env.h>
#include<tensorflow/core/platform/init_main.h>
#include<tensorflow/core/platform/logging.h>
#include<tensorflow/core/platform/types.h>
#include<tensorflow/core/public/session.h>
#include<tensorflow/core/util/command_line_flags.h>
using namespace std;
using namespace tensorflow;
using namespace tensorflow::ops;
using tensorflow::Flag;
using tensorflow::Tensor;
using tensorflow::Status;
using tensorflow::string;
using tensorflow::int32;
//判断是否读取完整图像
static Status ReadEntireFile(tensorflow::Env* env,const string& filename,Tensor* output) {
tensorflow::uint64 file_size = 0;
TF_RETURN_IF_ERROR(env->GetFileSize(filename, &file_size));
string contents;
contents.resize(file_size);
std::unique_ptr<tensorflow::RandomAccessFile>file;
TF_RETURN_IF_ERROR(env->NewRandomAccessFile(filename, &file));
tensorflow::StringPiece data;
TF_RETURN_IF_ERROR(file->Read(0, file_size, &data, &(contents)[0]));
if (data.size() != file_size) {
return tensorflow::errors::DataLoss("Truncated read of '", filename,
"' expected ", file_size, " got ", data.size());
}
output->scalar<string>()() = data.ToString();
return Status::OK();
}
//从本地读取图片,存放到vector<Tensor>
Status ReadTensorFromImageFile(const string& file_name,const int input_height,
const int input_width,const int input_mean,const int input_std,
std::vector<Tensor>* out_tensors) {
auto root = tensorflow::Scope::NewRootScope();
string input_name = "file_reader";
string out_name = "normalized";
Tensor input(tensorflow::DT_STRING, tensorflow::TensorShape());
TF_RETURN_IF_ERROR(ReadEntireFile(tensorflow::Env::Default(), file_name, &input));
auto file_reader = Placeholder(root.WithOpName("input"), tensorflow::DataType::DT_STRING);
std::vector<std::pair<string, tensorflow::Tensor>> inputs = { {"input",input} };
const int wanted_channels = 1;
tensorflow::Output image_reader;
if (tensorflow::StringPiece(file_name).ends_with(".png")) {
image_reader = DecodePng(root.WithOpName("png_reader"), file_reader,
DecodePng::Channels(wanted_channels));
}
else if (tensorflow::StringPiece(file_name).ends_with(".gif")) {
// gif decoder returns 4-D tensor, remove the first dim
image_reader =
Squeeze(root.WithOpName("squeeze_first_dim"),
DecodeGif(root.WithOpName("gif_reader"), file_reader));
}
else if (tensorflow::StringPiece(file_name).ends_with(".bmp")) {
image_reader = DecodeBmp(root.WithOpName("bmp_reader"), file_reader);
}
else {
// Assume if it's neither a PNG nor a GIF then it must be a JPEG.
image_reader = DecodeJpeg(root.WithOpName("jpeg_reader"), file_reader,
DecodeJpeg::Channels(wanted_channels));
}
// Now cast the image data to float so we can do normal math on it.
auto float_caster =
Cast(root.WithOpName("float_caster"), image_reader, tensorflow::DT_FLOAT);
// The convention for image ops in TensorFlow is that all images are expected
// to be in batches, so that they're four-dimensional arrays with indices of
// [batch, height, width, channel]. Because we only have a single image, we
// have to add a batch dimension of 1 to the start with ExpandDims().
auto dims_expander = ExpandDims(root.WithOpName("expand"), float_caster, 0);
// Bilinearly resize the image to fit the required dimensions.
// auto resized = ResizeBilinear(
//root, dims_expander,
//Const(root.WithOpName("size"), {input_height, input_width}));
// Subtract the mean and divide by the scale.
//Div(root.WithOpName(output_name), Sub(root, resized, {input_mean}),
//{input_std});
float input_max = 255;
Div(root.WithOpName("div"), dims_expander, input_max);
// This runs the GraphDef network definition that we've just constructed, and
// returns the results in the output tensor.
tensorflow::GraphDef graph;
TF_RETURN_IF_ERROR(root.ToGraphDef(&graph));
std::unique_ptr<tensorflow::Session> session(
tensorflow::NewSession(tensorflow::SessionOptions()));
TF_RETURN_IF_ERROR(session->Create(graph));
TF_RETURN_IF_ERROR(session->Run({ inputs }, { "div" }, {}, out_tensors));
return Status::OK();
}
int main() {
//创建新回话
Session* session;
Status status = NewSession(SessionOptions(), &session);
string model_path = "model.pb";
GraphDef graphdef; //定义一个图
Status status_load = ReadBinaryProto(Env::Default(), model_path, &graphdef);
if (!status_load.ok()) {
std::cout << "ERROR:Loading model failed..." << model_path << endl;
std::cout << status_load.ToString() << "
";
return -1;
}
//将模型导入session
Status status_create = session->Create(graphdef);
if (!status_create.ok()) {
std::cout << "ERROR:create graph in session failed..." << status_create.ToString() << '
';
return -1;
}
std::cout << "Session successfully created." << '
';
string image_path = "digit.jpg";
int input_height = 28, input_width = 28;
int input_mean = 0, input_std = 1;
std::vector<Tensor> resized_tensors;
Status read_tensor_status = ReadTensorFromImageFile(image_path, input_height, input_width,
input_mean, input_std,&resized_tensors);
if (!read_tensor_status.ok()) {
LOG(ERROR) << read_tensor_status;
cout << "resing error" << '
';
return -1;
}
const Tensor& resized_tensor = resized_tensors[0];
std::cout << resized_tensor.DebugString() << endl;
vector<tensorflow::Tensor> outputs;
string output_node = "softmax";
/*
virtual Status Run(const std::vector<std::pair<string, Tensor> >& inputs,
const std::vector<string>& output_tensor_names,
const std::vector<string>& target_node_names,
std::vector<Tensor>* outputs)
*/
Status status_run = session->Run({ {"inputs",resized_tensor} },
{ output_node }, {}, &outputs);
if (!status_run.ok()) {
std::cout << "ERROR: RUN failed..." << std::endl;
std::cout << status_run.ToString() << "
";
return -1;
}
std::cout << "Output tensor size:" << outputs.size() << std::endl;
for (std::size_t i = 0; i < outputs.size(); i++) {
std::cout << outputs[i].DebugString() << endl;
}
Tensor t = outputs[0];
int ndim = t.shape().dims();
auto tmap = t.tensor<float, 2>();
int output_dim = t.shape().dim_size(1);
std::vector<double> tout;
int output_class_id = -1;
double output_prob = 0.0;
for (int j = 0; j < output_dim; j++) {
std::cout << "Class " << j << "prob:" << tmap(0, j) << "," << endl;
if (tmap(0, j) >= output_prob) {
output_class_id = j;
output_prob = tmap(0, j);
}
}
std::cout << "Final class id:" << output_class_id << endl;
std::cout << "Final prob:" << output_prob << endl;
return 0;
}