思路:
已知:A%9973 = n; gcd(B,9973)=1;
求(A/B)%9973;
k = (A/B)%9973 - > A/B - 9973*y = k; -> A = k*B+9973*y;
带入 A%9973 = n中得 k*B%9973 = n;
kB - 9973*y = n; -> B*k/n -9973*y/n =1 =gcd(B,9973);
x = k/n,即k = n*x;
代码:
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long LL;
const int mod=9973;
void exgcd(LL a,LL b,LL &x,LL &y)
{
if(b==0)
{
x=1;
y=0;
return;
}
exgcd(b,a%b,x,y);
LL tmp=x;
x=y;
y=tmp-(a/b)*y;
}
int main()
{
LL a,b,m,n,x,y,t;
cin>>m;
while(m--)
{
cin>>n>>b;
exgcd(b,mod,x,y);
LL ans=(x%mod+mod)%mod;//逆元
LL sum=(n*(ans%mod))%mod;
cout<<sum<<endl;;
}
return 0;
}