• HDU 2767 Proving Equivalences (Tarjan)


    Proving Equivalences

    Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
    Total Submission(s) : 3   Accepted Submission(s) : 1

    Font: Times New Roman | Verdana | Georgia

    Font Size: ← →

    Problem Description

    Consider the following exercise, found in a generic linear algebra textbook.

    Let A be an n × n matrix. Prove that the following statements are equivalent:

    1. A is invertible.
    2. Ax = b has exactly one solution for every n × 1 matrix b.
    3. Ax = b is consistent for every n × 1 matrix b.
    4. Ax = 0 has only the trivial solution x = 0. 

    The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

    Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

    I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

    Input

    On the first line one positive number: the number of testcases, at most 100. After that per testcase:

    * One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
    * m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.

    Output

    Per testcase:

    * One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.

    Sample Input

    2
    4 0
    3 2
    1 2
    1 3
    

    Sample Output

    4
    2
    

    Source

    NWERC 2008
     
    题目大意:
    a 证明 b,且,b 证明 a,说明a和b相等
    a证明b,b证明c,可以得出 a 证明 c。 
    求最少再证明几次才能使得这些题都能互相证明
    题解:
    用Tarjan缩点,然后答案就是 max(入度=0,出度=0)。
    #include<bits/stdc++.h>
    using namespace std;
    int n,T,m,index,team_num;
    int low[20005],dfn[20005],team[20005],in[20005],out[20005];
    bool instack[20005];
    vector<int> mp[20005];
    stack<int> S;
    void Tarjan ( int u )
    {
        dfn[u]=low[u]=++index;
        S.push(u);
        instack[u]=1;
        for ( int i=0;i<mp[u].size();i++)
        {
            int v=mp[u][i];
            if (!dfn[v])
            {
                Tarjan (v) ;
                low[u]=min(low[u],low[v]);
            }
            else if (instack[v]) low[u]=min(low[u],dfn[v]);//是否在栈中
        }
        if (dfn[u]==low[u])  //构成强连通分量
        {
            team_num++; //组数
            while (1)   //同一组标号
            {
                int v=S.top(); S.pop();
                instack[v]=0;
                team[v]=team_num;
                if (v==u) break;
            }
        }
    }
    
    void dfs()
    {
        memset(team,0,sizeof(team));
        memset(dfn,0,sizeof(dfn));
        memset(low,0,sizeof(low));
        memset(instack,0,sizeof(instack));
        team_num=0;
        index=0;
        for(int i=1;i<=n;i++)
            if (!dfn[i]) Tarjan(i);
    }
    
    int main()
    {
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d%d",&n,&m);
            for(int i=1;i<=n;i++) mp[i].clear();
            for(int i=1;i<=m;i++)
            {
                int x,y;
                scanf("%d%d",&x,&y);
                mp[x].push_back(y);
            }
            dfs(); //缩点
            /*for(int i=1;i<=n;i++)
                printf("%d:%d
    ",i,team[i]);*/
    
           for(int i=1;i<=team_num;i++) in[i]=out[i]=0;
           for(int i=1;i<=n;i++)
            for(int j=0;j<mp[i].size();j++)
            {
                 if (team[i]!=team[mp[i][j]])
                 {
                     out[ team[i] ]++;
                     in[ team[mp[i][j]] ]++;
                 }
            }
            int innum=0,outnum=0;
            for(int i=1;i<=team_num;i++)
            {
               if (!in[i]) innum++;
               if (!out[i]) outnum++;
            }
            if (team_num==1) printf("0
    ");
              else printf("%d
    ",max(innum,outnum));
        }
        return 0;
    }
  • 相关阅读:
    torrent&BT百科
    网页flv下载探索_1
    u-boot FIT image介绍_转自“蜗窝科技”
    28个Unix/Linux的命令行神器_转
    程序员的“纪律性”_转自“蜗窝科技”
    “极致”神话和产品观念_转自“蜗窝科技”
    制作自己的嵌入式Linux电脑_转
    buildroot--uboot&kernel&rootfs全编译工具
    (转)编码规范系列(一):Eclipse Code Templates设置
    matlab图片清晰度调整
  • 原文地址:https://www.cnblogs.com/stepping/p/7667809.html
Copyright © 2020-2023  润新知