Problem Description
A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3
1 2 10
0 0 0
Sample Output
2
5
1 #include <cstdio> 2 #include <cstdlib> 3 #include <iostream> 4 #include <string> 5 6 using namespace std; 7 8 typedef long long ll; 9 10 ll f(ll n,ll A,ll B){ 11 if(n == 1||n == 2)return 1; 12 return (A*f(n-1,A,B)+B*f(n-2,A,B))%7; 13 } 14 15 int main(){ 16 ll n,A,B; 17 while(cin>>A>>B>>n){ 18 if(n==0&&A==0&&B==0)break; 19 cout<<f(n%49,A,B)<<endl; 20 } 21 return 0; 22 }