数据集下载地址:http://files.grouplens.org/datasets/movielens/
#!usr/bin/env python # -*- coding:utf-8 _*- """ @author: Ivan @version: v1.0 @time: 2018-12-14 12:36 """ # 使用Spark MLlib中推荐算法ALS对电影评分数据MovieLens推荐 from pyspark.sql import SparkSession from pyspark.mllib.recommendation import ALS, Rating, MatrixFactorizationModel from pyspark.mllib.regression import LabeledPoint, LinearRegressionWithSGD from pyspark.mllib.evaluation import RegressionMetrics from pyspark.mllib.linalg import DenseVector def alsModelEvaluate(model, testing_rdd): # 对测试数据集预测评分,针对测试数据集进行预测 predict_rdd = model.predictAll(testing_rdd.map(lambda r: (r[0], r[1]))) print(predict_rdd.take(5)) predict_actual_rdd = predict_rdd.map(lambda r: ((r[0], r[1]), r[2])) .join(testing_ratings.map(lambda r: ((r[0], r[1]), r[2]))) print(predict_actual_rdd.take(5)) # 创建评估指标实例对象 metrics = RegressionMetrics(predict_actual_rdd.map(lambda pr: pr[1])) print("MSE = %s" % metrics.meanSquaredError) print("RMSE = %s" % metrics.rootMeanSquaredError) # 返回均方根误差 return metrics.rootMeanSquaredError def train_model_evaluate(training_rdd, testing_rdd, rank, iterations, lambda_): # 定义函数,训练模型与模型评估 # 使用超参数的值,训练数据和ALS算法训练模型 model = ALS.train(training_rdd, rank, iterations, lambda_) # 模型的评估 rmse_value = alsModelEvaluate(model, testing_rdd) # 返回多元组 return (model, rmse_value, rank, iterations, lambda_) if __name__ == "__main__": # 构建SparkSession实例对象 spark = SparkSession.builder .appName("SparkSessionExample") .master("local") .getOrCreate() # 获取SparkContext实例对象 sc = spark.sparkContext # 读取数据 raw_ratings_rdd = sc.textFile("/wsh/project/Python/spark/data/u.data") # print(raw_ratings_rdd.count()) # print(raw_ratings_rdd.first()) # 获取评分数据前三个字段,构建Rating实例对象 ratings_rdd = raw_ratings_rdd.map(lambda line: line.split(' ')[0:3]) # print(ratings_rdd.first()) ratings_datas = ratings_rdd.map(lambda x: Rating(int(x[0]), int(x[1]), float(x[2]))) # print(ratings_datas.first()) # 查看评分数据中有多少电影 # print(ratings_datas.map(lambda x: x[1]).distinct().count()) # 查看评分数据中有多少用户 # print(ratings_datas.map(lambda x: x[0]).distinct().count()) # 将数据集分为训练数据集和测试数据集 training_ratings, testing_ratings = ratings_datas.randomSplit([0.8, 0.2]) ''' # 使用ALS算法来训练模型 # help(ALS) # 采用显示评分函数训练模型 alsModel = ALS.train(training_ratings, 10, iterations=10, lambda_=0.01) # 用户特征因子矩阵 user_feature_matrix = alsModel.userFeatures() print(type(user_feature_matrix)) print(user_feature_matrix.take(10)) # 物品因子矩阵 item_feature_matrix = alsModel.productFeatures() print(type(item_feature_matrix)) print(item_feature_matrix.take(10)) # 预测某个用户对某个电影的评分 # 假设用户196,对电影242的评分,实际评分为3分 predictRating = alsModel.predict(196, 242) print(predictRating) # 为用户推荐(10部电影) rmdMovies = alsModel.recommendProducts(196, 10) print(rmdMovies) # 为电影推荐(10个用户) rmdUsers = alsModel.recommendUsers(242, 10) print(rmdUsers) ''' # 怎么评价模型的好坏,ALS模型评估指标(类似回归算法模型预测值,连续值),使用回归模型中 # RMSE(均方根误差)评估模型 # 找到最佳模型 ''' 如何找到最佳模型?? -a. 模型的评估 计算RMSE -b. 模型的优化,两个方向 1、数据 2、超参数的调整,选择合适的超参数的值,得到最优模型 交叉验证 训练数据集、验证数据集、测试数据集 K-Folds交叉验证 ''' # ALS算法的超参数的调整 # 定义一个函数,用于对模型进行评估 # 使用三层for循环,设置不同参数的值,分别使用ALS算法训练模型,评估获取RMSE的值 metrix_list = [train_model_evaluate(training_ratings, testing_ratings, param_rank, param_iterations, param_lambda) for param_rank in [10, 20] for param_iterations in [10, 20] for param_lambda in [0.001, 0.01] ] print(type(metrix_list)) sorted(metrix_list, key=lambda k: k[1], reverse=False) model, rmse_value, rank, iterations, lambda_ = metrix_list[0] print("The best parameters, rank=%s, iterations=%s, lambda_=%s" % rank % iterations % lambda_) # 保存模型 model.save(sc, "/wsh/project/Python/spark/data/als_model") # 加载模型 load_model = MatrixFactorizationModel.load(sc, "/wsh/project/Python/spark/data/als_model")