• 卡方分布(Chi-squared)外点(outlier)剔除


    @

    误差定义

    outlier、外点、野值会严重影响SLAM的精度,因此必须把它们剔除。常用的做法是,计算一个误差,当这个误差大于设定阈值的时候就认为其为外点。

    就特征点法的视觉SLAM而言,一般会计算重投影误差。具体而言,记 (mathbf u)为特征点的2D位置,(overline{mathbf{u}})为由地图点投影到图像上的2D位置。重投影误差为
    在这里插入图片描述
    重投影误差服从高斯分布
    在这里插入图片描述
    其中,协方差(sigma)一般根据特征点提取的金字塔层级确定。具体的,记提取ORB特征时,图像金字塔的每层缩小尺度为(s) (ORB-SLAM中为1.2)。在ORB-SLAM中假设第0层的标准差为1个pixel (ORB-SLAM中设为了1个pixel);那么,一个在金字塔第n层提取的特征的重投影误差的协方差为:
    在这里插入图片描述
    式(1)中的误差是一个2维向量,阈值不好设置。那就把它变成一个标量,计算向量的内积(r) (向量元素的平方和)。但是,不同金字塔层的特征点都用同一个阈值,不合理呢。于是,在计算内积的时候,利用协方差进行加权(协方差表达了不确定度)。那么就有了
    在这里插入图片描述
    利用协方差加权,起到了归一化的作用。具体的(4)式,可以变为
    在这里插入图片描述

    在这里插入图片描述
    为多维标准正态分布

    阈值选取

    式(5)可以看做两个独立的服从标准正太分布随机变量的平方和,它服从2个自由度的(Chi-squared distribution)卡方分布。
    卡方分布的自由度即为向量的维度。不同的自由度卡方分布的概率密度函数和概率分布函数如下:
    卡方分布概率密度概率分布函数
    (alpha=0.05, F(x)=1-alpha=0.95) 可以得到95%置信度的置信区间为((0,F^{-1}(alpha))),即
    在这里插入图片描述
    查卡方分布表可得
    在这里插入图片描述
    对应的单目投影为2自由度,因此阈值为5.99;对应的双目投影为3个自由度,因此阈值为7.81。

  • 相关阅读:
    [Android-NDK编译] ndk 编译 c++ 兼容性问题汇总整理
    [云计算] 001.云计算简介
    eatwhatApp开发实战(十一)
    eatwhatApp开发实战(十)
    [Unity2d系列教程] 002.引用外部DLL
    Istio Sidecar
    Kubernetes Dashborad 搭建
    Istio 1.6架构及性能
    kubeadm 搭建kubernetes集群环境
    docker 安装
  • 原文地址:https://www.cnblogs.com/long5683/p/14279885.html
Copyright © 2020-2023  润新知