• UVA 11426 GCD


    题目是给出N,求G的值。

    可以转化为S(n) = f(1) + f(2) + f(3) + ... + f(n)。其中f(n) = gcd(1, n) + gcd(2, n) + ... + gcd(n, n)。

    随便写一个n = 5 的情况。得到gcd(1, 5) = 1, gcd(2, 5) = 1, gcd(3, 5) = 1, gcd(4, 5) = 1, gcd(5, 5) = 5。

    所以当f(5) = 1 * 4 + 5 * 1 = 9。显然我们可以根据公约数的值来计算f(n)的值。设gcd(x, n) = i, 可以得到gcd(x / i, n / i) = 1。也就是(x / i)与(n / i)互质,可以通过欧拉函数来计算(x / i)的数量。为了提高效率,可以枚举约束i,再枚举i的倍数n在线性时间内进行预处理

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 4000010;
    #define ll long long
    int phi[maxn];
    ll s[maxn], f[maxn];
    void phi_table(int n) {
        memset(phi, 0, sizeof(phi));
        phi[1] = 1;
        for(int i = 2; i <= n; i++) if(!phi[i])
            for(int j = i; j <= n; j += i) {
                if(!phi[j]) phi[j] = j;
                phi[j] = phi[j] / i * (i - 1);
            }
    }
    int main() {
        phi_table(maxn);
        memset(f, 0, sizeof(f));
        for(int i = 1; i <= maxn; i++)
            for(int n = i * 2; n <= maxn; n += i) f[n] += i * phi[n/i];
    
        s[2] = f[2];
        for(int n = 3; n <= maxn; n++) s[n] = s[n-1] + f[n];
    
        int n;
        while(~scanf("%d", &n)) {
            if(n == 0) break;
            cout << s[n] << endl;
        }
    }
  • 相关阅读:
    单元测试练习
    对软件的看法
    个人最终总结
    论文笔记--Fast RCNN
    个人最终总结2
    结对编程--基于android平台的黄金点游戏(2.0版本)
    结对编程--基于android平台的黄金点游戏
    团队作业(一)
    [java]wordcount程序
    第三周作业(二)
  • 原文地址:https://www.cnblogs.com/lonewanderer/p/5705218.html
Copyright © 2020-2023  润新知