题意
给定一个未知的(0/1)矩阵,对每个(i)求((1,1)sim(n,m))最短路为(i)的概率,在矩阵中不能向左走,路径长度为路径上权值为(1)的格子个数。
(nleq6,mleq100。)
思路
打死都不可能想到状态设计DP系列
参考了这篇博客的思路【51nod1683】最短路
概率乘了(2^{n imes m})之后其实就是方案数,所以问题转化为了求满足题目条件的方案数
发现(n)很小,最大只有(6),考虑状压,但是不能直接维护当前格子的最短路,因为在多条并列最短路时会重复计数
考虑现在的(0/1)矩阵的特殊性:因为不能向左走,所以对于同一列中相邻两个格子之间的最短路最多相差(1)。因此考虑维护一整列最短路的差分数组。
记(zt)为一个三进制状态,表示该行从第二行开始,每个格子与上面的格子的差
设(f[i][j][zt])表示第(i)列,第一行的最短路为(j),第(2)行~第(n)行的最短路的三进制为(zt)的方案数
转移时需要枚举下一列的(0/1)状态,线性更新一遍状态就可以了
时间复杂度为(O(nm2^n3^{n-1}))
代码
/*
Author:loceaner
*/
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define int long long
using namespace std;
const int A = 111;
const int B = 1e6 + 11;
const int inf = 0x3f3f3f3f;
inline int read() {
char c = getchar();
int x = 0, f = 1;
for (; !isdigit(c); c = getchar()) if (c == '-') f = -1;
for (; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
return x * f;
}
int zt[7], d[7], r[7], w[7], qwq, ans[A];
int n, m, mod, f[A][A][A << 3], g[A << 3][1 << 6][2];
signed main() {
n = read(), m = read(), mod = read();
qwq = (1 << n) - 1, zt[0] = 1;
for (int i = 1; i <= n; i++) zt[i] = zt[i - 1] * 3;
for (int s1 = 0; s1 <= zt[n - 1] - 1; s1++) {
d[1] = 0;
for (int i = 1; i <= n - 1; i++) d[i + 1] = d[i] + (s1 / zt[i - 1] % 3 - 1);
for (int s2 = 0; s2 <= qwq; s2++) {
for (int i = 1; i <= n; i++) w[i] = ((s2 & (1 << i - 1)) > 0), r[i] = d[i] + w[i];
for (int i = 2; i <= n; i++) r[i] = min(r[i], r[i - 1] + w[i]);
for (int i = n - 1; i >= 1; i--) r[i] = min(r[i], r[i + 1] + w[i]);
g[s1][s2][0] = r[1];
for (int i = 2; i <= n; i++) g[s1][s2][1] += (r[i] - r[i - 1] + 1) * zt[i - 2];
}
}
memset(d, 0, sizeof(d));
for (int s = 0; s <= qwq; s++) {
for (int i = 1; i <= n; i++) d[i] = d[i - 1] + ((s & (1 << i - 1)) > 0);
int t = 0;
for (int i = 2; i <= n; i++) t += (d[i] - d[i - 1] + 1) * zt[i - 2];
f[1][d[1]][t]++;
}
for (int i = 1; i <= m - 1; i++)
for (int j = 0; j <= i; j++)
for (int s = 0; s <= zt[n - 1] - 1; s++) {
if (!f[i][j][s]) continue;
for (int x = 0; x <= (1 << n) - 1; x++)
(f[i + 1][g[s][x][0] + j][g[s][x][1]] += f[i][j][s]) %= mod;
}
for (int j = 0; j <= m; j++)
for (int s = 0; s <= zt[n - 1] - 1; s++) {
if (!f[m][j][s])
continue;
d[1] = j;
for (int i = 1; i <= n - 1; i++) d[i + 1] = d[i] + (s / zt[i - 1] % 3 - 1);
if (d[n] < 0) continue;
(ans[d[n]] += f[m][j][s]) %= mod;
}
for (int i = 0; i <= n + m - 1; i++) cout << ans[i] << '
';
return 0;
}