• python中数据读取的那些事——python读取excel、txt


    继续讲一点python读取数据相关的操作为数据分析作准备。

    利用pandas读取

    一般在做数据分析时最常接触的就是逗号分隔值(Comma-Separated Values,CSV,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文本)。纯文本意味着该文件是一个字符序列,不含必须像二进制数字那样被解读的数据。CSV文件由任意数目的记录组成,记录间以某种换行符分隔;每条记录由字段组成,字段间的分隔符是其它字符或字符串,最常见的是逗号或制表符。通常,所有记录都有完全相同的字段序列。

    而大多数情况下读csv文件用pandas就可以搞定。

    import pandas as pd
    data = pd.read_csv('目录/文件名')
    

    要注意的是,如果直接pd.read_csv('文件名')要确保该文件在当前工作目录下。如果使用上面的绝对路径方法就不用将文件加入当前工作目录。

    如果只想读取csv文件中部分数据也是可以的

    data = pd.read_csv("文件名", usecols=['列名1', '列名2'])
    

    当然在读取过程中可以添加一些参数来达到对数据进行处理比如

     data = pd.read_csv("文件名",header=None,sep='	' ) 
    

    header就是指定dataframe的列名,默认为第一行,即header=0,要是不想读取列名,则header=None就可以,sep主要是用来分列的,sep=’ ’意思是使用 作为分隔符。

    官方文档指出对于read_csv()这个参数默认是英文逗号’ ,’而对于read_table()这个参数默认是制表符 ‘|t’ 。当然用户可以根据自己csv文件格式的特点自行设置。read_csv()还有一个参数是 delimeter, 作用与sep相同,只不过delitemer的默认值为None,而不是英文逗号 ‘,’

    如果是读取以txt文件提供的数据,只需将pd.read_csv()改成pd.read_table即可

    data = pd.read_table('文件名',header=None,encoding='gb2312',sep=',',index_col=0)
    

    其中header=None:没有每列的column name,可以自己设定,encoding=‘gb2312’:其他编码中文显示错误,sep=’,’:用逗号来分隔每行的数据,index_col=0:设置第1列数据作为index。

    如果是Excel的其他格式xls、xlsx等,可以使用

    data = pd.read_excel('filename.xlsx')
    

    当然也可以将文件另存为csv格式读取(有时候直接读xls会报错)。

    注意:在读csv的时候要确保行与行之间没有空格。否则就会报错。最后看下read_csv/table的全部相关参数

    1.filepath_or_buffer:(这是唯一一个必须有的参数,其它都是按需求选用的)
    文件所在处的路径
    
    2.sep:
    指定分隔符,默认为逗号','
    
    3.delimiter : str, default None
    定界符,备选分隔符(如果指定该参数,则sep参数失效)
    
    4.header:int or list of ints, default ‘infer’
    指定哪一行作为表头。默认设置为0(即第一行作为表头),如果没有表头的话,要修改参数,设置header=None
    
    5.names:
    指定列的名称,用列表表示。一般我们没有表头,即header=None时,这个用来添加列名就很有用啦!
    
    6.index_col:
    指定哪一列数据作为行索引,可以是一列,也可以多列。多列的话,会看到一个分层索引
    
    7.prefix:
    给列名添加前缀。如prefix="x",会出来"x1"、"x2"、"x3"酱纸
    
    8.nrows : int, default None
    需要读取的行数(从文件头开始算起)
    
    9.encoding:
    乱码的时候用这个就是了,官网文档看看用哪个:
    https://docs.python.org/3/library/codecs.html#standard-encodings
    
    10.skiprows : list-like or integer, default None
    需要忽略的行数(从文件开始处算起),或需要跳过的行号列表(从0开始)。
    

    其他方法

    使用CSV模块读取csv文件

    import csv 
    
    csv_file=csv.reader(open('filename.csv','r'))
    content=[] #用来存储整个文件的数据,存成一个列表,列表的每一个元素又是一个列表,表示的是文件的某一行
    for line in csv_file:
        content.append(line)
    

    上面的过程其实就是遍历csv文件的每一行,然后将每一行的数据作为一个元素存到设定好的list中,所以最终得到的是一个list。

    使用python I/O 读取CSV文件

    使用python I/O方法进行读取时即是新建一个List 列表然后按照先行后列的顺序(类似C语言中的二维数组)将数据存进空的List对象中,如果需要将其转化为numpy 数组也可以使用np.array(List name)进行对象之间的转化。

    data = []
    with open(birth_weight_file) as csvfile:
        csv_reader = csv.reader(csvfile)  # 使用csv.reader读取csvfile中的文件
        birth_header = next(csv_reader)  # 读取第一行每一列的标题
        for row in csv_reader:  # 将csv 文件中的数据保存到birth_data中
            data(row)
    
    

    使用tensorflow读取数据(转)

    import tensorflow as tf
    import os
    
    
    def csvread(filelist):
        '''
        读取CSV文件
        :param filename:  路径+文件名的列表
        :return: 读取内容
        '''
    
        # 1. 构造文件的队列
        file_queue = tf.train.string_input_producer(filelist)
    
        # 2. 构造csv阅读器读取队列数据(按一行)
        reader = tf.TextLineReader()
    
        key,value = reader.read(file_queue)
    
        # 3.对每行内容解码
        # record_defaults:指定每一个样本的每一列的类型,指定默认值[['None'],[4.0]]
        records = [['None'],['None']]
    
        example,label = tf.decode_csv(value,record_defaults=records)
    
        # batch_size跟队列,数据的数量没有影响,只决定这批次取多少数据
        # 4. 想要读取多个数据,就需要批处理
        example_batch,label_batch = tf.train.batch([example,label],batch_size=9,num_threads=1,capacity=9)
        # print(example,label)
        return example_batch,label_batch
    
    if __name__ == '__main__':
        # 找到文件,构建列表
        filename = os.listdir('./data/csvdata/')
    
        # 拼接路径 重新组成列表
        filelist = [os.path.join('./data/csvdata/',file) for file in filename]
    
        # 调用函数传参
        example_batch,label_batch = csvread(filelist)
    
        # 开启会话
        with tf.Session() as sess:
            # 定义一个线程协调器
            coord = tf.train.Coordinator()
    
            # 开启读文件的线程
            threads = tf.train.start_queue_runners(sess,coord=coord)
    
            # 打印读取的内容
            print(sess.run([example_batch,label_batch]))
    
    
            # 回收子线程
            coord.request_stop()
    
            coord.join(threads)
    

    使用xlrd读取Excel

    官方地址

    安装:pip install xlrd

    简单使用

    import xlrd
    # 打开文件
    data = xlrd.open_workbook('filename.xlsx')
    
    

    整体思路为,打开文件,选定表格,读取行列内容,读取表格内数据。

    data.sheet_names()  # 获取所有sheet名字
    data.nsheets        # 获取sheet数量
    data.sheets()       # 获取所有sheet对象
    sheet1 = data.sheet_by_name("test")  # 通过sheet名查找
    sheet2 = data.sheet_by_index(3)  # 通过索引查找
    rows = sheet1.row_values(2)#获取行内容
    cols = sheet1.col_values(3)#获取列内容
    

    readline读取txt

    #第一种方法
    f = open("data.txt","r")   #设置文件对象
    line = f.readline()
    line = line[:-1]
    while line:             #直到读取完文件
        line = f.readline()  #读取一行文件,包括换行符
        line = line[:-1]     #去掉换行符,也可以不去
    f.close() #关闭文件
    
    
    #第二种方法
    data = []
    for line in open("data.txt","r"): #设置文件对象并读取每一行文件
        data.append(line)               #将每一行文件加入到list中
    
    
    #第三种方法
    f = open("data.txt","r")   #设置文件对象
    data = f.readlines()  #直接将文件中按行读到list里,效果与方法2一样
    f.close()             #关闭文件
    

    好了,以上就是python中读取数据的一些常用方法,在遇到的时候肯定是首先选择pandas,读出来的就是dataframe十分方便数据切片、筛选、合并等操作。关于数据写的相关操作以后再讲吧。

  • 相关阅读:
    SpringCloud教程五:Zuul(路由+过滤)
    ubuntu18.0.4 不能下载 libgd2-dev
    ubuntu18.04下安装中文输入法
    Ubuntu下tomcat启动报错:Neither the JAVA_HOME nor the JRE_HOME environment variable is defined
    Java面试题汇总(一)
    Redis常见面试题
    Docker是什么
    Django实现自动发布(1数据模型)
    数据随机分配的思考
    单链表反转
  • 原文地址:https://www.cnblogs.com/liuzaoqi/p/12769615.html
Copyright © 2020-2023  润新知