一、什么是模块
常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀。
但其实import加载的模块分为四个通用类别:
1 使用python编写的代码(.py文件)
2 已被编译为共享库或DLL的C或C++扩展
3 包好一组模块的包
4 使用C编写并链接到python解释器的内置模块
二、模块的调用方式
1、import
# 示例代码 1 #spam.py 2 print('from the spam.py') 3 4 money=1000 5 6 def read1(): 7 print('spam->read1->money',money) 8 9 def read2(): 10 print('spam->read2 calling read') 11 read1() 12 13 def change(): 14 global money 15 money=0
1.1 模块可以包含可执行的语句和函数的定义,这些语句的目的是初始化模块,它们只在模块名第一次遇到导入import语句时才执行(import语句是可以在程序中的任意位置使用的,且针对同一个模块很import多次,为了防止你重复导入,python的优化手段是:第一次导入后就将模块名加载到内存了,后续的import语句仅是对已经加载大内存中的模块对象增加了一次引用,不会重新执行模块内的语句),如下
1 #test.py 2 import spam #只在第一次导入时才执行spam.py内代码,此处的显式效果是只打印一次'from the spam.py',当然其他的顶级代码也都被执行了,只不过没有显示效果. 3 import spam 4 import spam 5 import spam 6 7 ''' 8 执行结果: 9 from the spam.py 10 '''
我们可以从sys.module中找到当前已经加载的模块,sys.module是一个字典,内部包含模块名与模块对象的映射,该字典决定了导入模块时是否需要重新导入。
1.2 每个模块都是一个独立的名称空间,定义在这个模块中的函数,把这个模块的名称空间当做全局名称空间,这样我们在编写自己的模块时,就不用担心我们定义在自己模块中全局变量会在被导入时,与使用者的全局变量冲突
1 #测试一:money与spam.money不冲突 2 #test.py 3 import spam 4 money=10 5 print(spam.money) 6 7 ''' 8 执行结果: 9 from the spam.py 10 1000 11 '''
1 #测试二:read1与spam.read1不冲突 2 #test.py 3 import spam 4 def read1(): 5 print('========') 6 spam.read1() 7 8 ''' 9 执行结果: 10 from the spam.py 11 spam->read1->money 1000 12 '''
1 #测试三:执行spam.change()操作的全局变量money仍然是spam中的 2 #test.py 3 import spam 4 money=1 5 spam.change() 6 print(money) 7 8 ''' 9 执行结果: 10 from the spam.py 11 1 12 '''
1.3 总结:首次导入模块spam时会做三件事:
1.为源文件(spam模块)创建新的名称空间,在spam中定义的函数和方法若是使用到了global时访问的就是这个名称空间。
2.在新创建的命名空间中执行模块中包含的代码,见初始导入import spam
1 提示:导入模块时到底执行了什么? 2 3 In fact function definitions are also ‘statements’ that are ‘executed’; the execution of a module-level function definition enters the function name in the module’s global symbol table. 4 事实上函数定义也是“被执行”的语句,模块级别函数定义的执行将函数名放入模块全局名称空间表,用globals()可以查看
3.创建名字spam来引用该命名空间
1 这个名字和变量名没什么区别,都是‘第一类的’,且使用spam.名字的方式可以访问spam.py文件中定义的名字,spam.名字与test.py中的名字来自两个完全不同的地方。
1.4 为模块名起别名,相当于m1=1;m2=m1
1 import spam as sm 2 print(sm.money)
示范用法一:
有两中sql模块mysql和oracle,根据用户的输入,选择不同的sql功能
#mysql.py def sqlparse(): print('from mysql sqlparse') #oracle.py def sqlparse(): print('from oracle sqlparse') #test.py db_type=input('>>: ') if db_type == 'mysql': import mysql as db elif db_type == 'oracle': import oracle as db db.sqlparse()
示范用法二:
为已经导入的模块起别名的方式对编写可扩展的代码很有用,假设有两个模块xmlreader.py和csvreader.py,它们都定义了函数read_data(filename):用来从文件中读取一些数 据,但采用不同的输入格式。可以编写代码来选择性地挑选读取模块,例如
1 if file_format == 'xml': 2 import xmlreader as reader 3 elif file_format == 'csv': 4 import csvreader as reader 5 data=reader.read_date(filename)
1.5 在一行导入多个模块
1 import sys,os,re
2、from ..import
2.1 对比import spam,会将源文件的名称空间'spam'带到当前名称空间中,使用时必须是spam.名字的方式
而from 语句相当于import,也会创建新的名称空间,但是将spam中的名字直接导入到当前的名称空间中,在当前名称空间中,直接使用名字就可以了、
1 from spam import read1,read2
这样在当前位置直接使用read1和read2就好了,执行时,仍然以spam.py文件全局名称空间
#测试一:导入的函数read1,执行时仍然回到spam.py中寻找全局变量money #test.py from spam import read1 money=1000 read1() ''' 执行结果: from the spam.py spam->read1->money 1000 ''' #测试二:导入的函数read2,执行时需要调用read1(),仍然回到spam.py中找read1() #test.py from spam import read2 def read1(): print('==========') read2() ''' 执行结果: from the spam.py spam->read2 calling read spam->read1->money 1000 '''
#测试一:导入的函数read1,执行时仍然回到spam.py中寻找全局变量money #test.py from spam import read1 money=1000 read1() ''' 执行结果: from the spam.py spam->read1->money 1000 ''' #测试二:导入的函数read2,执行时需要调用read1(),仍然回到spam.py中找read1() #test.py from spam import read2 def read1(): print('==========') read2() ''' 执行结果: from the spam.py spam->read2 calling read spam->read1->money 1000 '''
如果当前有重名read1或者read2,那么会有覆盖效果。
#测试三:导入的函数read1,被当前位置定义的read1覆盖掉了 #test.py from spam import read1 def read1(): print('==========') read1() ''' 执行结果: from the spam.py ========== '''
#测试三:导入的函数read1,被当前位置定义的read1覆盖掉了 #test.py from spam import read1 def read1(): print('==========') read1() ''' 执行结果: from the spam.py ========== '''
需要特别强调的一点是:python中的变量赋值不是一种存储操作,而只是一种绑定关系,如下:
1 from spam import money,read1 2 money=100 #将当前位置的名字money绑定到了100 3 print(money) #打印当前的名字 4 read1() #读取spam.py中的名字money,仍然为1000,因为read1找的是money是read1作用域定义的money 5 6 ''' 7 from the spam.py 8 100 9 spam->read1->money 1000 10 '''
2.2 也支持as
1 from spam import read1 as read
2.3 也支持导入多行
1 from spam import (read1, 2 read2, 3 money)
2.4 from spam import * 把spam中所有的不是以下划线(_)开头的名字都导入到当前位置,大部分情况下我们的python程序不应该使用这种导入方式,因为*你不知道你导入什么名字,很有可能会覆盖掉你之前已经定义的名字。而且可读性极其的差,在交互式环境中导入时没有问题。
1 from spam import * #将模块spam中所有的名字都导入到当前名称空间 2 print(money) 3 print(read1) 4 print(read2) 5 print(change) 6 7 ''' 8 执行结果: 9 from the spam.py 10 1000 11 <function read1 at 0x1012e8158> 12 <function read2 at 0x1012e81e0> 13 <function change at 0x1012e8268> 14 '''
可以使用__all__来控制*(用来发布新版本)在spam.py中新增一行
__all__=['money','read1'] #这样在另外一个文件中用from spam import *就这能导入列表中规定的两个名字
如果spam.py中的名字前加_,即_money,则from spam import *,则_money不能被导入
2.5 考虑到性能的原因,每个模块只被导入一次,放入字典sys.module中,如果你改变了模块的内容,你必须重启程序,python不支持重新加载或卸载之前导入的模块,
有的同学可能会想到直接从sys.module中删除一个模块不就可以卸载了吗,注意了,你删了sys.module中的模块对象仍然可能被其他程序的组件所引用,因而不会被清楚。
特别的对于我们引用了这个模块中的一个类,用这个类产生了很多对象,因而这些对象都有关于这个模块的引用。
如果只是你想交互测试的一个模块,使用 importlib.reload(), e.g. import importlib; importlib.reload(modulename),这只能用于测试环境。
def func1(): print('func1')
def func1(): print('func1')
1 import time,importlib 2 import aa 3 4 time.sleep(20) 5 # importlib.reload(aa) 6 aa.func1()
1 import time,importlib 2 import aa 3 4 time.sleep(20) 5 # importlib.reload(aa) 6 aa.func1()
在20秒的等待时间里,修改aa.py中func1的内容,等待test.py的结果。
打开importlib注释,重新测试
三、把模块当做脚本执行的标志
当我们使用模块当脚本独立运行测试的时候,可以通过模块的全局变量__name__来查看模块名: 当做脚本运行: __name__ 等于'__main__' 当做模块导入: __name__= 作用:用来控制.py文件在不同的应用场景下执行不同的逻辑 if __name__ == '__main__':
def fib(n): # write Fibonacci series up to n a, b = 0, 1 while b < n: print(b, end=' ') a, b = b, a+b print() def fib2(n): # return Fibonacci series up to n result = [] a, b = 0, 1 while b < n: result.append(b) a, b = b, a+b return result if __name__ == "__main__": import sys fib(int(sys.argv[1]))
执行结果:
1 #python fib.py <arguments> 2 python fib.py 50 #在命令行
四、模块的加载搜索路径
python解释器在启动时会自动加载一些模块,可以使用sys.modules查看
在第一次导入某个模块时(比如spam),会先检查该模块是否已经被加载到内存中(当前执行文件的名称空间对应的内存),如果有则直接引用
如果没有,解释器则会查找同名的内建模块,如果还没有找到就从sys.path给出的目录列表中依次寻找spam.py文件。
所以总结模块的查找顺序是:内存中已经加载的模块->内置模块->sys.path路径中包含的模块
sys.path的初始化的值来自于:
The directory containing the input script (or the current directory when no file is specified).
PYTHONPATH (a list of directory names, with the same syntax as the shell variable PATH).
The installation-dependent default.
需要特别注意的是:我们自定义的模块名不应该与系统内置模块重名。常常会有人会去内置的重名。
在初始化后,python程序可以修改sys.path,路径放到前面的优先于标准库被加载。
1 >>> import sys 2 >>> sys.path.append('/a/b/c/d') 3 >>> sys.path.insert(0,'/x/y/z') #排在前的目录,优先被搜索
注意:搜索时按照sys.path中从左到右的顺序查找,位于前的优先被查找,sys.path中还可能包含.zip归档文件和.egg文件,python会把.zip归档文件当成一个目录去处理,
1 #首先制作归档文件:zip module.zip foo.py bar.py 2 3 import sys 4 sys.path.append('module.zip') 5 import foo,bar 6 7 #也可以使用zip中目录结构的具体位置 8 sys.path.append('module.zip/lib/python')
#windows下的路径不加r开头,会语法错误 sys.path.insert(0,r'C:UsersAdministratorPycharmProjectsa')
至于.egg文件是由setuptools创建的包,这是按照第三方python库和扩展时使用的一种常见格式,.egg文件实际上只是添加了额外元数据(如版本号,依赖项等)的.zip文件。
需要强调的一点是:只能从.zip文件中导入.py,.pyc等文件。使用C编写的共享库和扩展块无法直接从.zip文件中加载(此时setuptools等打包系统有时能提供一种规避方法),且从.zip中加载文件不会创建.pyc或者.pyo文件,因此一定要事先创建他们,来避免加载模块是性能下降。
五、编译Python 文件
为了提高加载模块的速度,强调强调强调:提高的是加载速度而绝非运行速度。python解释器会在__pycache__目录中下缓存每个模块编译后的版本,格式为:module.version.pyc。通常会包含python的版本号。例如,在CPython3.3版本下,spam.py模块会被缓存成__pycache__/spam.cpython-33.pyc。这种命名规范保证了编译后的结果多版本共存。
Python检查源文件的修改时间与编译的版本进行对比,如果过期就需要重新编译。这是完全自动的过程。并且编译的模块是平台独立的,所以相同的库可以在不同的架构的系统之间共享,即pyc使一种跨平台的字节码,类似于JAVA火.NET,是由python虚拟机来执行的,但是pyc的内容跟python的版本相关,不同的版本编译后的pyc文件不同,2.5编译的pyc文件不能到3.5上执行,并且pyc文件是可以反编译的,因而它的出现仅仅是用来提升模块的加载速度的。
python解释器在以下两种情况下不检测缓存
1 如果是在命令行中被直接导入模块,则按照这种方式,每次导入都会重新编译,并且不会存储编译后的结果(python3.3以前的版本应该是这样)
python -m spam.py
2 如果源文件不存在,那么缓存的结果也不会被使用,如果想在没有源文件的情况下来使用编译后的结果,则编译后的结果必须在源目录下
sh-3.2# ls __pycache__ spam.py sh-3.2# rm -rf spam.py sh-3.2# mv __pycache__/spam.cpython-36.pyc ./spam.pyc sh-3.2# python3 spam.pyc spam
提示:
1.模块名区分大小写,foo.py与FOO.py代表的是两个模块
2.你可以使用-O或者-OO转换python命令来减少编译模块的大小
1 -O转换会帮你去掉assert语句 2 -OO转换会帮你去掉assert语句和__doc__文档字符串 3 由于一些程序可能依赖于assert语句或文档字符串,你应该在在确认需要的情况下使用这些选项。
3.在速度上从.pyc文件中读指令来执行不会比从.py文件中读指令执行更快,只有在模块被加载时,.pyc文件才是更快的
4.只有使用import语句是才将文件自动编译为.pyc文件,在命令行或标准输入中指定运行脚本则不会生成这类文件,因而我们可以使用compieall模块为一个目录中的所有模块创建.pyc文件
1 模块可以作为一个脚本(使用python -m compileall)编译Python源 2 3 python -m compileall /module_directory 递归着编译 4 如果使用python -O -m compileall /module_directory -l则只一层 5 6 命令行里使用compile()函数时,自动使用python -O -m compileall 7 8 详见:https://docs.python.org/3/library/compileall.html#module-compileall
本文内容大多来源与另一博客,通地整理得出此博客,原博客:http://www.cnblogs.com/linhaifeng/articles/6379069.html