• HDU 3501 Calculation 2


    题目链接
    测试提交

    一、题意

    求解\(1\sim n\)\(n\)不互质的数的和。

    二、欧拉函数解法

    定义:欧拉函数是小于\(n\)的数中与\(n\)互质的数的数目。
    例如\(φ(8)=4\),因为\(1,3,5,7\)均和\(8\)互质。

    \(sum(n)=\phi(1)+\phi(2)+\phi(3)+...+\phi(n-1)+\phi(n)\)

    利用欧拉函数即可求解,\(1 \sim n\)\(n\)小且与\(n\)互素的数的总和为\(sum(n) = n * phi(n) / 2\);
    那么可以先求出\(1\sim n-1\)的总和,然后减去\(sum(n)\)即可。

    #include <bits/stdc++.h>
    using namespace std;
    typedef unsigned long long ULL;
    const ULL mod = 1000000007;
    
    ULL euler(ULL n) {
        ULL res = n, a = n;
        for (ULL i = 2; i * i <= a; i++) {
            if (a % i == 0) {
                res = res / i * (i - 1);
                while (a % i == 0) a /= i;
            }
        }
        if (a > 1) res = res / a * (a - 1);
        return res;
    }
    
    int main() {
        ULL n;
        while (~scanf("%llu", &n), n) {
            ULL sum = n * (1 + n) / 2 - n, ans;
            ans = sum - euler(n) * n / 2;
            printf("%llu\n", ans % mod);
        }
        return 0;
    }
    

    三、分解质因数+容斥原理

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const LL mod = 1000000007;
    
    int main() {
        LL n, m;
        while (cin >> m && m) {
            if (m == 1) {
                cout << "0" << endl;
                continue;
            }
    
            n = m;
            //分解质因数
            vector<LL> p;
            for (LL i = 2; i * i <= n; i++) {
                if (n % i == 0) {
                    p.push_back(i);
                    while (n % i == 0)
                        n = n / i;
                }
            }
            if (n > 1) p.push_back(n);
    
            LL ans = 0;
            for (int i = 1; i < (1 << p.size()); i++) {
                int cnt = 0;
                int t = 1;
                for (int j = 0; j < p.size(); j++) {
                    if (i >> j & 1) {
                        cnt++;
                        t *= p[j];
                    }
                }
                LL num = (m - 1) / t;
                LL tmp = (t + t * num) * num / 2;
                if (cnt & 1)
                    ans += tmp;
                else
                    ans -= tmp;
            }
            cout << ans % mod << endl;
        }
        return 0;
    }
    
  • 相关阅读:
    Java面试:用set集合的时候,重写过hashcode()和equal()方法吗?有什么作用?
    Bootstrap起步
    Java NIO
    Dobbo和SpringCloud区别
    Java虚拟机类加载机制和双亲委派模型
    继承和组合的特点和区别
    LinkedList和ArrayList底层原理
    聚集索引和非聚集索引
    Stream和迭代器的区别
    悲观锁和乐观锁
  • 原文地址:https://www.cnblogs.com/littlehb/p/16392266.html
Copyright © 2020-2023  润新知