• Leetcode | substr()


    求子串当然最经典的就是KMP算法了。brute force算法在leetcode上貌似也有一些技巧。

    brute force:

     1 char* StrStr(const char *str, const char *target) {
     2   if (!*target) return str;
     3   char *p1 = (char*)str, *p2 = (char*)target;
     4   char *p1Adv = (char*)str;
     5   while (*++p2)
     6     p1Adv++; // 这里相当于用这个指针控制外循环为N-M+1次
     7   while (*p1Adv) {
     8     char *p1Begin = p1;
     9     p2 = (char*)target;
    10     while (*p1 && *p2 && *p1 == *p2) {
    11       p1++;
    12       p2++;
    13     }
    14     if (!*p2)
    15       return p1Begin;
    16     p1 = p1Begin + 1;
    17     p1Adv++;
    18   }
    19   return NULL;
    20 }

    Knuth–Morris–Pratt算法:

     1 algorithm kmp_search:
     2     input:
     3         an array of characters, S (the text to be searched)
     4         an array of characters, W (the word sought)
     5     output:
     6         an integer (the zero-based position in S at which W is found)
     7 
     8     define variables:
     9         an integer, m ← 0 (the beginning of the current match in S)
    10         an integer, i ← 0 (the position of the current character in W)
    11         an array of integers, T (the table, computed elsewhere)
    12 
    13     while m + i < length(S) do
    14         if W[i] = S[m + i] then
    15             if i = length(W) - 1 then
    16                 return m
    17             let i ← i + 1
    18         else
    19             let m ← m + i - T[i]
    20             if T[i] > -1 then
    21                 let i ← T[i]
    22             else
    23                 let i ← 0
    24             
    25     (if we reach here, we have searched all of S unsuccessfully)
    26     return the length of S

    当然关键在于求T这个数组,T[i]就相当于S[0:T[i]] = W[i - T[i], i]。

     1 algorithm kmp_table:
     2     input:
     3         an array of characters, W (the word to be analyzed)
     4         an array of integers, T (the table to be filled)
     5     output:
     6         nothing (but during operation, it populates the table)
     7 
     8     define variables:
     9         an integer, pos ← 2 (the current position we are computing in T)
    10         an integer, cnd ← 0 (the zero-based index in W of the next 
    11 character of the current candidate substring)
    12 
    13     (the first few values are fixed but different from what the algorithm 
    14 might suggest)
    15     let T[0] ← -1, T[1] ← 0
    16 
    17     while pos < length(W) do
    18         (first case: the substring continues)
    19         if W[pos - 1] = W[cnd] then
    20             let cnd ← cnd + 1, T[pos] ← cnd, pos ← pos + 1
    21 
    22         (second case: it doesn't, but we can fall back)
    23         else if cnd > 0 then
    24             let cnd ← T[cnd]
    25 
    26         (third case: we have run out of candidates.  Note cnd = 0)
    27         else
    28             let T[pos] ← 0, pos ← pos + 1
  • 相关阅读:
    spring IOC --- 控制反转(依赖注入)----简单的实例
    Spring MVC 返回视图时添加的模型数据------POJO
    Controller接口控制器3
    Controller接口控制器2
    Controller接口控制器
    Spring-MVC:应用上下文webApplicationContext
    DispatcherServlet 前置控制器
    WEB安全 asp+access注入
    WEB安全 Sqlmap 中绕过空格拦截的12个脚本
    Python 爬虫练习(三) 利用百度进行子域名收集
  • 原文地址:https://www.cnblogs.com/linyx/p/3663071.html
Copyright © 2020-2023  润新知