• MapReduce应用案例--简单排序


    1. 设计思路

      在MapReduce过程中自带有排序,可以使用这个默认的排序达到我们的目的。 MapReduce 是按照key值进行排序的,我们在Map过程中将读入的数据转化成IntWritable类型,然后作为Map的key值输出。 Reduce 阶段拿到的就是按照key值排序好的<key,value list>,将key值输出,并根据value list 中元素的个数决定key的输出次数。

    2. 实现

      2.1 程序代码

      

    package sort;
    
    import java.io.IOException;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    
    public class SimpleSort {
        public static class Map extends
                Mapper<LongWritable, Text, IntWritable, IntWritable> {
            private IntWritable data;
    
            protected void map(LongWritable key, Text value, Context context)
                    throws java.io.IOException, InterruptedException {
                data = new IntWritable();
                String line = value.toString();
                data.set(Integer.parseInt(line));
                context.write(data, new IntWritable(1));
            };
        }
    
        public static class Reduce extends
                Reducer<IntWritable, IntWritable, IntWritable, IntWritable> {
            
            private static IntWritable num = new IntWritable(1);
            protected void reduce(IntWritable key,
                    java.lang.Iterable<IntWritable> values, Context output)
                    throws java.io.IOException, InterruptedException {
                for ( IntWritable val : values){
                    output.write(num, key);
                    num = new IntWritable(num.get() + 1);
                }
            };
        }
        
        public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
            Configuration conf =  new Configuration();
            Job job = new Job(conf,"simple sort");
            
            job.setJarByClass(SimpleSort.class);
            job.setMapperClass(Map.class);
            job.setReducerClass(Reduce.class);
            job.setOutputKeyClass(IntWritable.class);
            job.setOutputValueClass(IntWritable.class);
            
            FileInputFormat.addInputPath(job, new Path("/user/hadoop_admin/sortin"));
            FileOutputFormat.setOutputPath(job, new Path("/user/hadoop_admin/sortout"));
            
            System.exit((job.waitForCompletion(true) ? 0 : 1));
        }
    
    }

      2.2 测试结果

      测试用例

      file1

    2
    3
    1
    89
    34
    21
    67
    35

      file2

      

    38
    29
    1
    23
    49
    16

      运行信息

    16/04/11 10:09:00 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    16/04/11 10:09:00 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
    ****hdfs://master:9000/user/hadoop_admin/sortin
    16/04/11 10:09:00 INFO input.FileInputFormat: Total input paths to process : 2
    16/04/11 10:09:00 WARN snappy.LoadSnappy: Snappy native library not loaded
    16/04/11 10:09:00 INFO mapred.JobClient: Running job: job_local_0001
    16/04/11 10:09:00 INFO mapred.Task:  Using ResourceCalculatorPlugin : null
    16/04/11 10:09:00 INFO mapred.MapTask: io.sort.mb = 100
    16/04/11 10:09:00 INFO mapred.MapTask: data buffer = 79691776/99614720
    16/04/11 10:09:00 INFO mapred.MapTask: record buffer = 262144/327680
    16/04/11 10:09:00 INFO mapred.MapTask: Starting flush of map output
    16/04/11 10:09:00 INFO mapred.MapTask: Finished spill 0
    16/04/11 10:09:00 INFO mapred.Task: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
    16/04/11 10:09:01 INFO mapred.JobClient:  map 0% reduce 0%
    16/04/11 10:09:03 INFO mapred.LocalJobRunner: 
    16/04/11 10:09:03 INFO mapred.Task: Task 'attempt_local_0001_m_000000_0' done.
    16/04/11 10:09:03 INFO mapred.Task:  Using ResourceCalculatorPlugin : null
    16/04/11 10:09:03 INFO mapred.MapTask: io.sort.mb = 100
    16/04/11 10:09:03 INFO mapred.MapTask: data buffer = 79691776/99614720
    16/04/11 10:09:03 INFO mapred.MapTask: record buffer = 262144/327680
    16/04/11 10:09:03 INFO mapred.MapTask: Starting flush of map output
    16/04/11 10:09:03 INFO mapred.MapTask: Finished spill 0
    16/04/11 10:09:03 INFO mapred.Task: Task:attempt_local_0001_m_000001_0 is done. And is in the process of commiting
    16/04/11 10:09:04 INFO mapred.JobClient:  map 100% reduce 0%
    16/04/11 10:09:06 INFO mapred.LocalJobRunner: 
    16/04/11 10:09:06 INFO mapred.Task: Task 'attempt_local_0001_m_000001_0' done.
    16/04/11 10:09:06 INFO mapred.Task:  Using ResourceCalculatorPlugin : null
    16/04/11 10:09:06 INFO mapred.LocalJobRunner: 
    16/04/11 10:09:06 INFO mapred.Merger: Merging 2 sorted segments
    16/04/11 10:09:06 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 144 bytes
    16/04/11 10:09:06 INFO mapred.LocalJobRunner: 
    16/04/11 10:09:06 INFO mapred.Task: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
    16/04/11 10:09:06 INFO mapred.LocalJobRunner: 
    16/04/11 10:09:06 INFO mapred.Task: Task attempt_local_0001_r_000000_0 is allowed to commit now
    16/04/11 10:09:06 INFO output.FileOutputCommitter: Saved output of task 'attempt_local_0001_r_000000_0' to /user/hadoop_admin/sortout
    16/04/11 10:09:09 INFO mapred.LocalJobRunner: reduce > reduce
    16/04/11 10:09:09 INFO mapred.Task: Task 'attempt_local_0001_r_000000_0' done.
    16/04/11 10:09:10 INFO mapred.JobClient:  map 100% reduce 100%
    16/04/11 10:09:10 INFO mapred.JobClient: Job complete: job_local_0001
    16/04/11 10:09:10 INFO mapred.JobClient: Counters: 19
    16/04/11 10:09:10 INFO mapred.JobClient:   File Output Format Counters 
    16/04/11 10:09:10 INFO mapred.JobClient:     Bytes Written=71
    16/04/11 10:09:10 INFO mapred.JobClient:   FileSystemCounters
    16/04/11 10:09:10 INFO mapred.JobClient:     FILE_BYTES_READ=85835
    16/04/11 10:09:10 INFO mapred.JobClient:     HDFS_BYTES_READ=97
    16/04/11 10:09:10 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=239842
    16/04/11 10:09:10 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=71
    16/04/11 10:09:10 INFO mapred.JobClient:   File Input Format Counters 
    16/04/11 10:09:10 INFO mapred.JobClient:     Bytes Read=38
    16/04/11 10:09:10 INFO mapred.JobClient:   Map-Reduce Framework
    16/04/11 10:09:10 INFO mapred.JobClient:     Reduce input groups=13
    16/04/11 10:09:10 INFO mapred.JobClient:     Map output materialized bytes=152
    16/04/11 10:09:10 INFO mapred.JobClient:     Combine output records=0
    16/04/11 10:09:10 INFO mapred.JobClient:     Map input records=14
    16/04/11 10:09:10 INFO mapred.JobClient:     Reduce shuffle bytes=0
    16/04/11 10:09:10 INFO mapred.JobClient:     Reduce output records=14
    16/04/11 10:09:10 INFO mapred.JobClient:     Spilled Records=28
    16/04/11 10:09:10 INFO mapred.JobClient:     Map output bytes=112
    16/04/11 10:09:10 INFO mapred.JobClient:     Total committed heap usage (bytes)=877854720
    16/04/11 10:09:10 INFO mapred.JobClient:     Combine input records=0
    16/04/11 10:09:10 INFO mapred.JobClient:     Map output records=14
    16/04/11 10:09:10 INFO mapred.JobClient:     SPLIT_RAW_BYTES=230
    16/04/11 10:09:10 INFO mapred.JobClient:     Reduce input records=14

      结果

      

    1    1
    2    1
    3    2
    4    3
    5    16
    6    21
    7    23
    8    29
    9    34
    10    35
    11    38
    12    49
    13    67
    14    89
  • 相关阅读:
    二分LIS模板
    NYOJ16 矩形嵌套 【DAG上的DP/LIS】
    动态规划题库
    洛谷 P1616 疯狂的采药【裸完全背包】
    洛谷 P1049 装箱问题【正难则反/01背包】
    洛谷 P1048 采药【裸01背包】
    洛谷 P1064 金明的预算方案【有依赖的分组背包】
    洛谷 P1064 金明的预算方案【DP/01背包-方案数】
    洛谷 P1060 开心的金明【DP/01背包】
    51nod 1202 不同子序列个数 [计数DP]
  • 原文地址:https://www.cnblogs.com/linux-wangkun/p/5377287.html
Copyright © 2020-2023  润新知