• 转一道容斥原理的题


    源出处:https://blog.csdn.net/qingshui23/article/details/51077728

    POJ 3904 Sky Code (容斥原理)

    2016年04月06日 19:53:49

    阅读数:827

    传送门

    Sky Code

    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 2027   Accepted: 650

    Description

    Stancu likes space travels but he is a poor software developer and will never be able to buy his own spacecraft. That is why he is preparing to steal the spacecraft of Petru. There is only one problem – Petru has locked the spacecraft with a sophisticated cryptosystem based on the ID numbers of the stars from the Milky Way Galaxy. For breaking the system Stancu has to check each subset of four stars such that the only common divisor of their numbers is 1. Nasty, isn’t it? Fortunately, Stancu has succeeded to limit the number of the interesting stars to N but, any way, the possible subsets of four stars can be too many. Help him to find their number and to decide if there is a chance to break the system.

    Input

    In the input file several test cases are given. For each test case on the first line the number N of interesting stars is given (1 ≤ N ≤ 10000). The second line of the test case contains the list of ID numbers of the interesting stars, separated by spaces. Each ID is a positive integer which is no greater than 10000. The input data terminate with the end of file.

    Output

    For each test case the program should print one line with the number of subsets with the asked property.

    Sample Input

    4
    2 3 4 5 
    4
    2 4 6 8 
    7
    2 3 4 5 7 6 8

    Sample Output

    1 
    0 
    34

    Source

    Southeastern European Regional Programming Contest 2008

    题目大意:

    给出n(n<10000)个数,这些数<=10000,让你求的就是 GCD(a,b,c,d) == 1的个数,注意必须是 4 个数

    解题思路:

    其实这个题一开始做就像暴力,可是自己又暴不明白,因为 他把这个题归入容斥原理,所以就考虑GCD(a,b,c,d)  == 1的反面就是 GCD(a,b,c,d)  != 1,那么a, b, c, d 必定有同样的因子,所以 :

    第一步:计算n个数字选四个总共有多少种选法[ C(n,4) ],然后减去公约数不是1的。

    第二步:由一个素因子组合成的四个数的组合数 + 由两个素因子组合成的四个数的组合数 -....+..(奇加偶减)

    第三步:进行二进制枚举,在枚举的时候要用到两个数组 ,_cnt[]:记录当前因子是由多少个素因子组成, sum[]:记录当前因子的个数

    第四步:我们先考虑将每一个数 进行素因子分解,在这里完全可以采用暴力也就是 O(sqrt(n))的算法,因为数据不是很大,当然也可以直接进行素数筛,我采用的就是素数筛。

    最后一步:假设a是2的因子的个数,b是3的因子的个数,c是6的因子的个数,就是C(n,4) - C(a,4) - C(b,4) + C(c,4)

    容斥原理,与第一步差不多...

    PS:我还用了输入输出外挂,果然快呀 ^_^

    My Code:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    using namespace std;
    const int MAXN = 1e4+5;
    typedef long long LL;
    int Scan()///输入外挂
    {
        int res=0,ch,flag=0;
        if((ch=getchar())=='-')
            flag=1;
        else if(ch>='0'&&ch<='9')
            res=ch-'0';
        while((ch=getchar())>='0'&&ch<='9')
            res=res*10+ch-'0';
        return flag?-res:res;
    }
    void Out(LL a)///输出外挂
    {
        if(a>9)
            Out(a/10);
        putchar(a%10+'0');
    }
     
    int p[MAXN];
    bool prime[MAXN];
    int k;
    void isprime()///素数筛
    {
        k = 0;
        LL i, j;
        memset(prime,false,sizeof(prime));
        for(i=2; i<MAXN; i++)
        {
            if(!prime[i])
            {
                p[k++] = i;
                for(j=i*i; j<MAXN; j+=i)
                    prime[j] = true;
            }
        }
    }
    int fac[MAXN/100],num[100], cnt;
    void Dec(int m)///素因子分解
    {
        cnt = 0;
        memset(num, 0, sizeof(num));
        for(int i=0; p[i]*p[i]<=m&&i<k; i++)
        {
            if(m%p[i]==0)
            {
                fac[cnt] = p[i];
                while(m%p[i]==0)
                {num[cnt]++;
                    m /= p[i];
                }
                cnt++;
            }
        }
        if(m > 1)
        {
            fac[cnt] = m;
            num[cnt++]=1;
        }
        ///cout<<cnt<<endl;
        ///cout<<fac[0]<<" "<<fac[1]<<endl;
    }
    int sum[MAXN];///记录当前因子的个数
    int _cnt[MAXN];///记录当前因子是由多少个素因子组成
    void Get(int m)
    {
        Dec(m);
        for(int i=1; i<(1<<cnt); i++)
        {
            int s = 0;
            LL ans = 1;
            for(int j=0; j<cnt; j++)
            {
                if(i & (1<<j))
                {
                    s++;
                    ans *= fac[j];
                    if(ans > m)
                        break;
                }
            }
            sum[ans]++;
            _cnt[ans] = s;
        }
    }
    LL ak[MAXN];///C(n,4)
    void RongChi()
    {
        memset(ak,0,sizeof(ak));
        for(LL i=4; i<MAXN; i++)
            ak[i] = i*(i-1)*(i-2)*(i-3)/24;
    }
    int main()
    {
        RongChi();
        isprime();
        ///Dec(1);
        int n, x;
        while(~scanf("%d",&n))
        {
            memset(sum, 0, sizeof(sum));
            int m = n;
            while(m--)
            {
                x = Scan();
                Get(x);
            }
            LL ret = 0;
            for(int i=0; i<MAXN; i++)
            {
                if(sum[i])
                {
                    if(_cnt[i] & 1)
                        ret += ak[sum[i]];
                    else
                        ret -= ak[sum[i]];
                }
            }
            LL ans = ak[n] - ret;
            Out(ans);
            puts("");
        }
        return 0;
    }
     

  • 相关阅读:
    Unity实现Bezier曲线的移动(三点之间的Bezier曲线的移动)
    error CS2001: Source file `Assets/Pro Standard Assets/Image Based/SaveGameData.cs' could not be found 错误
    Some objects were not cleaned up when closing the scene. (Did you spawn new GameObjects from OnDestroy?) 错误
    Unity拖拽旋转2D物体
    Unity预编译
    Activity的四种launchMode
    接入华为海外SDK支付,按下home键,之后支付页面被销毁
    Android动态权限申请
    armeabi与armeabi-v7a的区别
    win7上帝模式
  • 原文地址:https://www.cnblogs.com/linruier/p/9513855.html
Copyright © 2020-2023  润新知