• BZOJ 1901: Zju2112 Dynamic Rankings 区间k大 带修改 在线 线段树套平衡树


    之前写线段树套splay数组版。。写了6.2k。。然后弃疗了。现在发现还是很水的。。嘎嘎。。

    zju过不了,超时。

      upd:才发现zju是多组数据。。TLE一版才发现。然后改了,MLE。。。手写内存池。。尼玛终于过了。。附zju2112代码于后。

    bzoj倒是过了,1A的感觉还是很爽的。。可是时间不好看。。这就是所谓(O(nlog^3n))的复杂度的可怜之处么?

    写挂的地方:

    • insert一定要是传地址指针进去。
    • delete时先把地址指针delete掉,最后把是地址指针指向左儿子or右儿子or NULL。
    • 节点初始化时一定要把左右儿子指针指向NULL。
    • 注意脑残,b打错变量名的问题。 

    做法:线段树约束区间,平衡树支持修改和查询,没了。

      修改:每次在包含点的线段树节点所包含的平衡树中删除要改的节点值,在插入新的值,(O(log^2n))。

      查询:由于无法直接查询,所以二分答案,求得答案在区间內的排名,等于各区间小于该值的节点数量,select直接搞,总共(O(log^3n)),具体可以先插入一个值节点,在求值节点的rank,最后删掉即可。

    我是用线段树套treap。

    然后树状数组套平衡树也可以过,常数小很多。。。

    达成成就:AC树套树。

      1 #include <cstdio>
      2 #include <cstdlib>
      3 #include <ctime>
      4 #include <cstring>
      5 typedef long long LL;
      6 const int maxn = 10000 + 20;
      7 int n, m, sum, a[maxn], INF = 0x3f3f3f3f;
      8 struct treap_node {
      9     treap_node *ch[2];
     10     int key, fix, cnt, size;
     11     treap_node() {
     12         ch[0] = ch[1] = NULL;
     13     }
     14     treap_node(int _key) {
     15         ch[0] = ch[1] = NULL;
     16         key = _key;
     17         size = cnt = 1;
     18         fix = rand();
     19     }
     20 } *T[maxn << 2];
     21 inline void maintain(treap_node *t) {
     22     t->size = t->cnt;
     23     if(t->ch[0]) t->size += t->ch[0]->size;
     24     if(t->ch[1]) t->size += t->ch[1]->size;
     25 }
     26 void rot(treap_node *&t, int d) {
     27     treap_node *p = t->ch[d ^ 1];
     28     t->ch[d ^ 1] = p->ch[d], p->ch[d] = t;
     29     maintain(t), maintain(p);
     30     t = p;
     31 }
     32 void insert(treap_node *&t, int val) {
     33     if(t == NULL) {
     34         t = new treap_node(val);
     35     } else {
     36         if(val < t->key) {
     37             insert(t->ch[0], val);
     38             if(t->ch[0]->fix < t->fix) rot(t, 1);
     39         } else if(t->key < val) {
     40             insert(t->ch[1], val);
     41             if(t->ch[1]->fix < t->fix) rot(t, 0);
     42         } else
     43             ++t->cnt;
     44     }
     45     maintain(t);
     46 }
     47 void del(treap_node *&t, int val) {
     48     if(t->key == val) {
     49         if(t->cnt == 1) {
     50             if(!t->ch[0] || !t->ch[1]) {
     51                 treap_node *p = t;
     52                 if(!p->ch[0]) p = t->ch[1];
     53                 else p = t->ch[0];
     54                 delete t;
     55                 t = p;
     56             } else {
     57                 int d = t->ch[0]->fix < t->ch[1]->fix;
     58                 rot(t, d);
     59                 del(t->ch[d], val);
     60             }
     61         } else --t->cnt;
     62     } else del(t->ch[t->key < val], val);
     63     if(t) maintain(t);
     64 }
     65 int select(treap_node *t, int val) {
     66     if(t == NULL) return 0;
     67     if(val < t->key) return select(t->ch[0], val);
     68     int p = (t->ch[0]) ? t->ch[0]->size + t->cnt : t->cnt;
     69     if(t->key < val) p += select(t->ch[1], val);
     70     return p;
     71 }
     72 bool ok;
     73 void query(int l, int r, int rt, int ql, int qr, int val) {
     74     if(ql <= l && r <= qr) {
     75         sum += select(T[rt], val);
     76         return ;
     77     } else {
     78         int mid = (l + r) >> 1;
     79         if(ql <= mid) query(l, mid, rt << 1, ql, qr, val);
     80         if(mid < qr) query(mid + 1, r, rt << 1 | 1, ql, qr, val);
     81     }
     82 }
     83 void seg_del(int l, int r, int rt, int pos, int val) {
     84     del(T[rt], val);
     85     if(l == r) return ;
     86     int mid = (l + r) >> 1;
     87     if(pos <= mid) seg_del(l, mid, rt << 1, pos, val);
     88     else if(mid < pos) seg_del(mid + 1, r, rt << 1 | 1, pos, val);
     89 }
     90 void seg_insert(int l, int r, int rt, int pos, int val) {
     91     insert(T[rt], val);
     92     if(l == r) return ;
     93     int mid = (l + r) >> 1;
     94     if(pos <= mid) seg_insert(l, mid, rt << 1, pos, val);
     95     else if(mid < pos) seg_insert(mid + 1, r, rt << 1 | 1, pos, val);
     96 }
     97 
     98 char gchar() {
     99     char ret = getchar();
    100     for(; ret == '
    ' || ret == '
    ' || ret == ' '; ret = getchar());
    101     return ret;
    102 }
    103 int main() {
    104 #ifndef ONLINE_JUDGE
    105     freopen("data.in", "r", stdin), freopen("data.out", "w", stdout);
    106 #endif
    107     scanf("%d%d", &n, &m);
    108     srand(n * m + 258);
    109     for(int i = 1; i <= n; ++i) {
    110         scanf("%d", &a[i]);
    111         seg_insert(1, n, 1, i, a[i]);
    112     }
    113     ok = false;
    114     for(int i = 1, p, b, c, d; i <= m; ++i) {
    115         d = gchar();
    116         if(d == 'C') {
    117             scanf("%d%d", &p, &b);
    118             seg_del(1, n, 1, p, a[p]);
    119             a[p] = b;
    120             seg_insert(1, n, 1, p, a[p]);
    121         } else {
    122             scanf("%d%d%d", &b, &c, &p);
    123             LL l = 0, r = INF;
    124             while(l < r) {
    125                 LL mid = (l + r) >> 1;
    126                 sum = 0;
    127                 query(1, n, 1, b, c, mid);
    128                 if(sum < p) {
    129                     l = mid + 1;
    130                 } else {
    131                     r = mid;
    132                 }
    133             }
    134             printf("%lld
    ", l);
    135         }
    136     }
    137     return 0;
    138 }
    View Code
      1 #include <cstdio>
      2 #include <cstdlib>
      3 #include <ctime>
      4 #include <cstring>
      5 typedef long long LL;
      6 const int maxn = 50000 + 1;
      7 int n, m, sum, a[maxn], INF = 0x3f3f3f3f;
      8 struct treap_node {
      9     treap_node *ch[2];
     10     int key, fix, cnt, size;
     11     treap_node() {
     12         ch[0] = ch[1] = NULL;
     13     }
     14     treap_node(int _key) {
     15         ch[0] = ch[1] = NULL;
     16         key = _key;
     17         size = cnt = 1;
     18         fix = rand();
     19     }
     20 } *T[maxn << 2];
     21 treap_node null_thing;
     22 struct storage {
     23     treap_node free_node[maxn * 18];
     24     int top, rec;
     25     void init() {
     26         rec = maxn * 18;
     27         for(int i = 0; i < rec; ++i) free_node[top++] = i;
     28     }
     29     treap_node _new(int val) {
     30         return free_node[--top] = treap_node(val);
     31     }
     32     void back_data() {
     33         for(int i = top; i < rec; ++i) free_node[top++] = i;
     34     }
     35 }S;
     36 
     37 inline void maintain(treap_node *t) {
     38     t->size = t->cnt;
     39     if(t->ch[0]) t->size += t->ch[0]->size;
     40     if(t->ch[1]) t->size += t->ch[1]->size;
     41 }
     42 void rot(treap_node *&t, int d) {
     43     treap_node *p = t->ch[d ^ 1];
     44     t->ch[d ^ 1] = p->ch[d], p->ch[d] = t;
     45     maintain(t), maintain(p);
     46     t = p;
     47 }
     48 void insert(treap_node *&t, int val) {
     49     if(t == NULL) {
     50         S._new(val);
     51         t = &S.free_node[S.top];
     52     } else {
     53         if(val < t->key) {
     54             insert(t->ch[0], val);
     55             if(t->ch[0]->fix < t->fix) rot(t, 1);
     56         } else if(t->key < val) {
     57             insert(t->ch[1], val);
     58             if(t->ch[1]->fix < t->fix) rot(t, 0);
     59         } else
     60             ++t->cnt;
     61     }
     62     maintain(t);
     63 }
     64 void del(treap_node *&t, int val) {
     65     if(t->key == val) {
     66         if(t->cnt == 1) {
     67             if(!t->ch[0] || !t->ch[1]) {
     68                 treap_node *p = t;
     69                 if(!p->ch[0]) p = t->ch[1];
     70                 else p = t->ch[0];
     71                 t = p;
     72             } else {
     73                 int d = t->ch[0]->fix < t->ch[1]->fix;
     74                 rot(t, d);
     75                 del(t->ch[d], val);
     76             }
     77         } else --t->cnt;
     78     } else del(t->ch[t->key < val], val);
     79     if(t) maintain(t);
     80 }
     81 int select(treap_node *t, int val) {
     82     if(t == NULL) return 0;
     83     if(val < t->key) return select(t->ch[0], val);
     84     int p = (t->ch[0]) ? t->ch[0]->size + t->cnt : t->cnt;
     85     if(t->key < val) p += select(t->ch[1], val);
     86     return p;
     87 }
     88 bool ok;
     89 void query(int l, int r, int rt, int ql, int qr, int val) {
     90     if(ql <= l && r <= qr) {
     91         sum += select(T[rt], val);
     92         return ;
     93     } else {
     94         int mid = (l + r) >> 1;
     95         if(ql <= mid) query(l, mid, rt << 1, ql, qr, val);
     96         if(mid < qr) query(mid + 1, r, rt << 1 | 1, ql, qr, val);
     97     }
     98 }
     99 void seg_del(int l, int r, int rt, int pos, int val) {
    100     del(T[rt], val);
    101     if(l == r) return ;
    102     int mid = (l + r) >> 1;
    103     if(pos <= mid) seg_del(l, mid, rt << 1, pos, val);
    104     else if(mid < pos) seg_del(mid + 1, r, rt << 1 | 1, pos, val);
    105 }
    106 void seg_insert(int l, int r, int rt, int pos, int val) {
    107     insert(T[rt], val);
    108     if(l == r) return ;
    109     int mid = (l + r) >> 1;
    110     if(pos <= mid) seg_insert(l, mid, rt << 1, pos, val);
    111     else if(mid < pos) seg_insert(mid + 1, r, rt << 1 | 1, pos, val);
    112 }
    113 
    114 char gchar() {
    115     char ret = getchar();
    116     for(; ret == '
    ' || ret == '
    ' || ret == ' '; ret = getchar());
    117     return ret;
    118 }
    119 void del_tree(int l, int r, int rt) {
    120     T[rt] = NULL;
    121     if(l == r) return ;
    122     int mid = (l + r) >> 1;
    123     del_tree(l, mid, rt << 1);
    124     del_tree(mid + 1, r, rt << 1 | 1);
    125 }
    126 int main() {
    127 
    128     int test_num;
    129     scanf("%d", &test_num);
    130     S.init();
    131     while(test_num--) {
    132         S.back_data();
    133         scanf("%d%d", &n, &m);
    134         del_tree(1, n, 1);
    135         srand(n * m + 258);
    136         for(int i = 1; i <= n; ++i) {
    137             scanf("%d", &a[i]);
    138             seg_insert(1, n, 1, i, a[i]);
    139         }
    140         ok = false;
    141         for(int i = 1, p, b, c, d; i <= m; ++i) {
    142             d = gchar();
    143             if(d == 'C') {
    144                 scanf("%d%d", &p, &b);
    145                 seg_del(1, n, 1, p, a[p]);
    146                 a[p] = b;
    147                 seg_insert(1, n, 1, p, a[p]);
    148             } else {
    149                 scanf("%d%d%d", &b, &c, &p);
    150                 LL l = 0, r = INF;
    151                 while(l < r) {
    152                     LL mid = (l + r) >> 1;
    153                     sum = 0;
    154                     query(1, n, 1, b, c, mid);
    155                     if(sum < p) {
    156                         l = mid + 1;
    157                     } else {
    158                         r = mid;
    159                     }
    160                 }
    161                 printf("%lld
    ", l);
    162             }
    163         }
    164     }
    165     return 0;
    166 }
    zju 2112
  • 相关阅读:
    n皇后问题
    几种NFS系统对比,选型理由
    MooseFs集群故障恢复运维
    TB级NFS数据平滑迁移方案设计与实现
    NFS挂载各机显示用户不同的问题
    TB级NFS数据平滑迁移系列
    mysql备份和恢复
    Java基础赋值符号
    java 流程控制基础之if else
    Java基础赋值符号
  • 原文地址:https://www.cnblogs.com/hzf-sbit/p/3895524.html
Copyright © 2020-2023  润新知