• 1019. General Palindromic Number (20)


    题目链接:http://www.patest.cn/contests/pat-a-practise/1019

    题目:

    1019. General Palindromic Number (20)

    时间限制
    400 ms
    内存限制
    65536 kB
    代码长度限制
    16000 B
    判题程序
    Standard
    作者
    CHEN, Yue

    A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.

    Although palindromic numbers are most often considered in the decimal system, the concept of palindromicity can be applied to the natural numbers in any numeral system. Consider a number N > 0 in base b >= 2, where it is written in standard notation with k+1 digits ai as the sum of (aibi) for i from 0 to k. Here, as usual, 0 <= ai < b for all i and ak is non-zero. Then N is palindromic if and only if ai = ak-i for all i. Zero is written 0 in any base and is also palindromic by definition.

    Given any non-negative decimal integer N and a base b, you are supposed to tell if N is a palindromic number in base b.

    Input Specification:

    Each input file contains one test case. Each case consists of two non-negative numbers N and b, where 0 <= N <= 109 is the decimal number and 2 <= b <= 109 is the base. The numbers are separated by a space.

    Output Specification:

    For each test case, first print in one line "Yes" if N is a palindromic number in base b, or "No" if not. Then in the next line, print N as the number in base b in the form "ak ak-1 ... a0". Notice that there must be no extra space at the end of output.

    Sample Input 1:
    27 2
    
    Sample Output 1:
    Yes
    1 1 0 1 1
    
    Sample Input 2:
    121 5
    
    Sample Output 2:
    No
    4 4 1

    分析:

    就是先把十进制的某个数化为某个进制的数。然后看其是否是回文数,比方27。化为2进制数,是11011,是二进制数。121化为5进制,是441。不是回文

    注意点:

    看n == 0的情况。


    AC代码:

    #include<stdio.h>
    #include<vector>
    using namespace std;
    vector<int>V;
    int main(void){
     int n, b;
     while (scanf("%d%d", &n, &b) != EOF){
      V.clear();
      if (n == 0){//假设是0的话,任何进制都是回文数字
       puts("Yes");
       printf("0
    ");
       continue;
      }
      while (n){//用V来存储b进制下的各个位数
       V.push_back(n % b);
       n /= b;
      }
      bool result  = true;;
      for (int i = 0; i < V.size(); i++){
       if (V[i] != V[V.size() - i - 1]){
        result = false;//一有不等的,就不是回文
        break;
       }
      }
      if (result){
       puts("Yes");
      }
      else puts("No");
      for (int i = V.size() - 1; i >= 0; i --){
       if (i == V.size() - 1)printf("%d", V[i]);
       else printf(" %d", V[i]);
      }
      printf("
    ");
     }
     return 0;
    }


    截图:

    ——Apie陈小旭

  • 相关阅读:
    [转]nmake命令(windows下的makefile)
    [转]Visual Studio 2010 C++ 工程文件解读
    [转]开源库的编译
    强软弱虚引用试验
    ArtHas JVM在线排查工具
    JVM常用参数
    CMS两个常见问题
    jvisual vm连接
    jconsole连接
    JVM调优
  • 原文地址:https://www.cnblogs.com/liguangsunls/p/7045516.html
Copyright © 2020-2023  润新知