调优前的基础概念:
- 吞吐量:用户代码时间 /(用户代码执行时间 + 垃圾回收时间)
- 响应时间:STW越短,响应时间越好
所谓调优,首先确定,追求啥?吞吐量优先,还是响应时间优先?还是在满足一定的响应时间的情况下,要求达到多大的吞吐量...
一般1.8之后,暂且默认G1就可以了,综合性比较强。其他新代垃圾回收器都在试验阶段
什么是调优?
- 根据需求进行JVM规划和预调优
- 优化运行JVM运行环境(慢,卡顿)
- 解决JVM运行过程中出现的各种问题(OOM)
调优,从规划开始
-
调优,从业务场景开始,没有业务场景的调优都是耍流氓
-
无监控(压力测试,能看到结果),不调优
-
步骤:
- 熟悉业务场景(没有最好的垃圾回收器,只有最合适的垃圾回收器)
- 响应时间、停顿时间 [CMS G1 ZGC] (需要给用户作响应)
- 吞吐量 = 用户时间 /( 用户时间 + GC时间) [PS]
- 选择回收器组合
- 计算内存需求
- 选定CPU(越高越好)
- 设定年代大小、升级年龄
- 设定日志参数
- -Xloggc:/opt/xxx/logs/xxx-xxx-gc-%t.log -XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=5 -XX:GCLogFileSize=20M -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCCause
- 或者每天产生一个日志文件
- 观察日志情况
- 熟悉业务场景(没有最好的垃圾回收器,只有最合适的垃圾回收器)
-
案例1:垂直电商,最高每日百万订单,处理订单系统需要什么样的服务器配置?
这个问题比较业余,因为很多不同的服务器配置都能支撑(1.5G 16G)
1小时360000集中时间段, 100个订单/秒,(找一小时内的高峰期,1000订单/秒)
经验值,
非要计算:一个订单产生需要多少内存?512K * 1000 500M内存
专业一点儿问法:要求响应时间100ms
压测!
-
案例2:12306遭遇春节大规模抢票应该如何支撑?
12306应该是中国并发量最大的秒杀网站:
号称并发量100W最高
CDN -> LVS -> NGINX -> 业务系统 -> 每台机器1W并发(10K问题-redis) 100台机器
普通电商订单 -> 下单 ->订单系统(IO)减库存 ->等待用户付款
12306的一种可能的模型: 下单 -> 减库存 和 订单(redis kafka) 同时异步进行 ->等付款
减库存最后还会把压力压到一台服务器
可以做分布式本地库存 + 单独服务器做库存均衡
大流量的处理方法:分而治之
-
怎么得到一个事务会消耗多少内存?
-
弄台机器,看能承受多少TPS?是不是达到目标?扩容或调优,让它达到
-
用压测来确定
-
优化环境
- 有一个50万PV的资料类网站(从磁盘提取文档到内存)原服务器32位,1.5G 的堆,用户反馈网站比较缓慢,因此公司决定升级,新的服务器为64位,16G 的堆内存,结果用户反馈卡顿十分严重,反而比以前效率更低了
- 为什么原网站慢? 很多用户浏览数据,很多数据load到内存,内存不足,频繁GC,STW长,响应时间变慢
- 为什么会更卡顿? 内存越大,FGC时间越长
- ParNew+CMS多服务 或者 G1
- 系统CPU经常100%,如何调优?(面试高频) CPU100%那么一定有线程在占用系统资源,
- 找出哪个进程cpu高(top)
- 该进程中的哪个线程cpu高(top -Hp)
- 导出该线程的堆栈 (jstack)
- 查找哪个方法(栈帧)消耗时间 (jstack)
- 工作线程占比高 | 垃圾回收线程占比高
- 系统内存飙高,如何查找问题?(面试高频)
- 导出堆内存 (jmap dump),查看 jmap -histo(也有一定影响,但在线上考虑情况也是可以用的)
- 分析 (jhat jvisualvm mat jprofiler ... )
- 如何监控JVM
- jstat jvisualvm jprofiler arthas(线上在线排查) top...