参考博客:https://www.cnblogs.com/kismetv/p/10331633.html
0.提交和回滚
注:mysql默认自动开启了事务。
-- 手动开启事务
start transaction;
-- 一条或多条sql语句
commit;
查看是否开启了事务:show variables like 'autocommit';
ON
表明已开启。
关闭事务开启:set autocommit = 0;
(值针对该连接产生影响)
1.特性
- A(atomicity):一个事务是一个不可分割的工作单位,其中的操作要么都做,要么都不做
- C(consistency)
- I(isolation)
- D(durability)
2.ACID实现原理
MySQL核心日志:binlog(备份),redolog(保证事务持久性),undolog(保证事务原子性和隔离性)
2.1 原子性
A:undo log(回滚日志),当事务对数据库进行修改时,InnoDB会生成对应的undo log;如果事务执行失败或调用了rollback,导致事务需要回滚,便可以利用undo log中的信息将数据回滚到修改之前的样子。
2.2 持久性
C:redo log
InnoDB作为MySQL的存储引擎,数据是存放在磁盘中的,但如果每次读写数据都需要磁盘IO,效率会很低。为此,InnoDB提供了缓存(Buffer Pool),Buffer Pool中包含了磁盘中部分数据页的映射,作为访问数据库的缓冲:当从数据库读取数据时,会首先从Buffer Pool中读取,如果Buffer Pool中没有,则从磁盘读取后放入Buffer Pool;当向数据库写入数据时,会首先写入Buffer Pool,Buffer Pool中修改的数据会定期刷新到磁盘中(这一过程称为刷脏)。
Buffer Pool的使用大大提高了读写数据的效率,但是也带了新的问题:如果MySQL宕机,而此时Buffer Pool中修改的数据还没有刷新到磁盘,就会导致数据的丢失,事务的持久性无法保证。
于是,redo log被引入来解决这个问题:当数据修改时,除了修改Buffer Pool中的数据,还会在redo log记录这次操作;当事务提交时,会调用fsync接口对redo log进行刷盘。如果MySQL宕机,重启时可以读取redo log中的数据,对数据库进行恢复。redo log采用的是WAL(Write-ahead logging,预写式日志),所有修改先写入日志,再更新到Buffer Pool,保证了数据不会因MySQL宕机而丢失,从而满足了持久性要求。
既然redo log也需要在事务提交时将日志写入磁盘,为什么它比直接将Buffer Pool中修改的数据写入磁盘(即刷脏)要快呢?主要有以下两方面的原因:
(1)刷脏是随机IO,因为每次修改的数据位置随机,但写redo log是追加操作,属于顺序IO。
(2)刷脏是以数据页(Page)为单位的,MySQL默认页大小是16KB,一个Page上一个小修改都要整页写入;而redo log中只包含真正需要写入的部分,无效IO大大减少。
1.redo log与binlog的区别
在MySQL中还存在binlog(二进制日志)也可以记录写操作并用于数据的恢复,但二者是有着根本的不同的:
(1)作用不同:redo log是用于crash recovery的,保证MySQL宕机也不会影响持久性;binlog是用于point-in-time recovery的,保证服务器可以基于时间点恢复数据,此外binlog还用于主从复制。
(2)层次不同:redo log是InnoDB存储引擎实现的,而binlog是MySQL的服务器层(可以参考文章前面对MySQL逻辑架构的介绍)实现的,同时支持InnoDB和其他存储引擎。
(3)内容不同:redo log是物理日志,内容基于磁盘的Page;binlog的内容是二进制的,根据binlog_format参数的不同,可能基于sql语句、基于数据本身或者二者的混合。
(4)写入时机不同:binlog在事务提交时写入;redo log的写入时机相对多元:
- 前面曾提到:当事务提交时会调用fsync对redo log进行刷盘;这是默认情况下的策略,修改innodb_flush_log_at_trx_commit参数可以改变该策略,但事务的持久性将无法保证。
- 除了事务提交时,还有其他刷盘时机:如master thread每秒刷盘一次redo log等,这样的好处是不一定要等到commit时刷盘,commit速度大大加快。
2.3 隔离性
:与原子性、持久性侧重于研究事务本身不同,隔离性研究的是不同事务之间的相互影响。隔离性是指,事务内部的操作与其他事务是隔离的,并发执行的各个事务之间不能互相干扰。严格的隔离性,对应了事务隔离级别中的Serializable (可串行化),但实际应用中出于性能方面的考虑很少会使用可串行化。
隔离性追求的是并发情形下事务之间互不干扰。简单起见,我们主要考虑最简单的读操作和写操作(加锁读等特殊读操作会特殊说明),那么隔离性的探讨,主要可以分为两个方面:
- (一个事务)写操作对(另一个事务)写操作的影响:锁机制保证隔离性
- (一个事务)写操作对(另一个事务)读操作的影响:MVCC保证隔离性
锁机制的基本原理可以概括为:事务在修改数据之前,需要先获得相应的锁;获得锁之后,事务便可以修改数据;该事务操作期间,这部分数据是锁定的,其他事务如果需要修改数据,需要等待当前事务提交或回滚后释放锁。
查看全局隔离级别和本次会话的隔离级别:
select @@global.tx_isolation;
select @@tx_isolation;
1.mvcc
:multi-version concurrency control,即多版本的并发控制协议。
主要基于以下技术及数据结构:
1)隐藏列:InnoDB中每行数据都有隐藏列,隐藏列中包含了本行数据的事务id、指向undo log的指针等。
2)基于undo log的版本链:前面说到每行数据的隐藏列中包含了指向undo log的指针,而每条undo log也会指向更早版本的undo log,从而形成一条版本链。
3)ReadView:通过隐藏列和版本链,MySQL可以将数据恢复到指定版本;但是具体要恢复到哪个版本,则需要根据ReadView来确定。所谓ReadView,是指事务(记做事务A)在某一时刻给整个事务系统(trx_sys)打快照,之后再进行读操作时,会将读取到的数据中的事务id与trx_sys快照比较,从而判断数据对该ReadView是否可见,即对事务A是否可见。
参考:
https://www.jianshu.com/p/1f275c7267b2
https://www.cnblogs.com/xinzhang-java/articles/15265844.html (案例图片太模糊了)
trx_sys中的主要内容,以及判断可见性的方法如下:
-
low_limit_id:表示生成ReadView时系统中应该分配给下一个事务的id。如果数据的事务id大于low_limit_id,则对该ReadView不可见。
-
up_limit_id:表示生成ReadView时当前系统中活跃的读写事务中最小的事务id。如果数据的事务id小于up_limit_id,则对该ReadView可见。
-
rw_trx_ids:表示生成ReadView时当前系统中活跃的读写事务的事务id列表。如果数据的事务id在low_limit_id和up_limit_id之间,则需要判断事务id是否在rw_trx_ids中:如果在,说明生成ReadView时事务仍在活跃中,因此数据对ReadView不可见;如果不在,说明生成ReadView时事务已经提交了,因此数据对ReadView可见。
2.4 一致性
:指事务执行结束后,数据库的完整性约束没有被破坏,事务执行的前后都是合法的数据状态。数据库的完整性约束包括但不限于:实体完整性(如行的主键存在且唯一)、列完整性(如字段的类型、大小、长度要符合要求)、外键约束、用户自定义完整性(如转账前后,两个账户余额的和应该不变)。
实现:可以说,一致性是事务追求的最终目标:前面提到的原子性、持久性、隔离性,都是为了保证数据库状态的一致性。除了数据库层面的保障,一致性的实现也需要应用层面进行保障。
实现一致性的措施包括:
- 保证原子性、持久性和隔离性,如果这些特性无法保证,事务的一致性也无法保证
- 数据库本身提供保证,例如不允许向整形列插入字符串值,字符串长度不能超过列的限制
- 应用层进行保障。例如如果转账操作只扣除转账者的余额,而没有增加接收者的余额,无论数据库实现的多么完美,也无法保证状态的一致