• 详解Apache Hudi如何配置各种类型分区


    1. 引入

    Apache Hudi支持多种分区方式数据集,如多级分区、单分区、时间日期分区、无分区数据集等,用户可根据实际需求选择合适的分区方式,下面来详细了解Hudi如何配置何种类型分区。

    2. 分区处理

    为说明Hudi对不同分区类型的处理,假定写入Hudi的Schema如下

    {
      "type" : "record",
      "name" : "HudiSchemaDemo",
      "namespace" : "hoodie.HudiSchemaDemo",
      "fields" : [ {
        "name" : "age",
        "type" : [ "long", "null" ]
      }, {
        "name" : "location",
        "type" : [ "string", "null" ]
      }, {
        "name" : "name",
        "type" : [ "string", "null" ]
      }, {
        "name" : "sex",
        "type" : [ "string", "null" ]
      }, {
        "name" : "ts",
        "type" : [ "long", "null" ]
      }, {
        "name" : "date",
        "type" : [ "string", "null" ]
      } ]
    }
    

    其中一条具体数据如下

    {
      "name": "zhangsan", 
      "ts": 1574297893837, 
      "age": 16, 
      "location": "beijing", 
      "sex":"male", 
      "date":"2020/08/16"
    }
    

    2.1 单分区

    单分区表示使用一个字段表示作为分区字段的场景,可具体分为非日期格式字段(如location)和日期格式字段(如date)

    2.1.1 非日期格式字段分区

    如使用上述location字段做为分区字段,在写入Hudi并同步至Hive时配置如下

    df.write().format("org.apache.hudi").
                    options(getQuickstartWriteConfigs()).
                    option(DataSourceWriteOptions.TABLE_TYPE_OPT_KEY(), "COPY_ON_WRITE").
                    option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY(), "ts").
                    option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY(), "name").
                    option(DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY(), partitionFields).
                    option(DataSourceWriteOptions.KEYGENERATOR_CLASS_OPT_KEY(), keyGenerator).
                    option(TABLE_NAME, tableName).
                    option("hoodie.datasource.hive_sync.enable", true).
                    option("hoodie.datasource.hive_sync.table", tableName).
                    option("hoodie.datasource.hive_sync.username", "root").
                    option("hoodie.datasource.hive_sync.password", "123456").
                    option("hoodie.datasource.hive_sync.jdbcurl", "jdbc:hive2://localhost:10000").
                    option("hoodie.datasource.hive_sync.partition_fields", hivePartitionFields).
                    option("hoodie.datasource.write.table.type", "COPY_ON_WRITE").
                    option("hoodie.embed.timeline.server", false).
                    option("hoodie.datasource.hive_sync.partition_extractor_class", hivePartitionExtractorClass).
                    mode(saveMode).
                    save(basePath);
    

    值得注意如下几个配置项

    • DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY()配置为location
    • hoodie.datasource.hive_sync.partition_fields配置为location,与写入Hudi的分区字段相同;
    • DataSourceWriteOptions.KEYGENERATOR_CLASS_OPT_KEY()配置为org.apache.hudi.keygen.SimpleKeyGenerator,或者不配置该选项,默认为org.apache.hudi.keygen.SimpleKeyGenerator
    • hoodie.datasource.hive_sync.partition_extractor_class配置为org.apache.hudi.hive.MultiPartKeysValueExtractor

    Hudi同步到Hive创建的表如下

    CREATE EXTERNAL TABLE `notdateformatsinglepartitiondemo`(
      `_hoodie_commit_time` string,
      `_hoodie_commit_seqno` string,
      `_hoodie_record_key` string,
      `_hoodie_partition_path` string,
      `_hoodie_file_name` string,
      `age` bigint,
      `date` string,
      `name` string,
      `sex` string,
      `ts` bigint)
    PARTITIONED BY (
      `location` string)
    ROW FORMAT SERDE
      'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
    STORED AS INPUTFORMAT
      'org.apache.hudi.hadoop.HoodieParquetInputFormat'
    OUTPUTFORMAT
      'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
    LOCATION
      'file:/tmp/hudi-partitions/notDateFormatSinglePartitionDemo'
    TBLPROPERTIES (
      'last_commit_time_sync'='20200816154250',
      'transient_lastDdlTime'='1597563780')
    

    查询表notdateformatsinglepartitiondemo

    tips: 查询时请先将hudi-hive-sync-bundle-xxx.jar包放入$HIVE_HOME/lib下

    2.1.2 日期格式分区

    如使用上述date字段做为分区字段,核心配置项如下

    • DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY()配置为date
    • hoodie.datasource.hive_sync.partition_fields配置为date,与写入Hudi的分区字段相同;
    • DataSourceWriteOptions.KEYGENERATOR_CLASS_OPT_KEY()配置为org.apache.hudi.keygen.SimpleKeyGenerator,或者不配置该选项,默认为org.apache.hudi.keygen.SimpleKeyGenerator
    • hoodie.datasource.hive_sync.partition_extractor_class配置为org.apache.hudi.hive.SlashEncodedDayPartitionValueExtractor

    Hudi同步到Hive创建的表如下

    CREATE EXTERNAL TABLE `dateformatsinglepartitiondemo`(
      `_hoodie_commit_time` string,
      `_hoodie_commit_seqno` string,
      `_hoodie_record_key` string,
      `_hoodie_partition_path` string,
      `_hoodie_file_name` string,
      `age` bigint,
      `location` string,
      `name` string,
      `sex` string,
      `ts` bigint)
    PARTITIONED BY (
      `date` string)
    ROW FORMAT SERDE
      'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
    STORED AS INPUTFORMAT
      'org.apache.hudi.hadoop.HoodieParquetInputFormat'
    OUTPUTFORMAT
      'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
    LOCATION
      'file:/tmp/hudi-partitions/dateFormatSinglePartitionDemo'
    TBLPROPERTIES (
      'last_commit_time_sync'='20200816155107',
      'transient_lastDdlTime'='1597564276')
    

    查询表dateformatsinglepartitiondemo

    2.2 多分区

    多分区表示使用多个字段表示作为分区字段的场景,如上述使用location字段和sex字段,核心配置项如下

    • DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY()配置为location,sex
    • hoodie.datasource.hive_sync.partition_fields配置为location,sex,与写入Hudi的分区字段相同;
    • DataSourceWriteOptions.KEYGENERATOR_CLASS_OPT_KEY()配置为org.apache.hudi.keygen.ComplexKeyGenerator
    • hoodie.datasource.hive_sync.partition_extractor_class配置为org.apache.hudi.hive.MultiPartKeysValueExtractor

    Hudi同步到Hive创建的表如下

    CREATE EXTERNAL TABLE `multipartitiondemo`(
      `_hoodie_commit_time` string,
      `_hoodie_commit_seqno` string,
      `_hoodie_record_key` string,
      `_hoodie_partition_path` string,
      `_hoodie_file_name` string,
      `age` bigint,
      `date` string,
      `name` string,
      `ts` bigint)
    PARTITIONED BY (
      `location` string,
      `sex` string)
    ROW FORMAT SERDE
      'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
    STORED AS INPUTFORMAT
      'org.apache.hudi.hadoop.HoodieParquetInputFormat'
    OUTPUTFORMAT
      'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
    LOCATION
      'file:/tmp/hudi-partitions/multiPartitionDemo'
    TBLPROPERTIES (
      'last_commit_time_sync'='20200816160557',
      'transient_lastDdlTime'='1597565166')
    

    查询表multipartitiondemo

    2.3 无分区

    无分区场景是指无分区字段,写入Hudi的数据集无分区。核心配置如下

    • DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY()配置为空字符串;
    • hoodie.datasource.hive_sync.partition_fields配置为空字符串,与写入Hudi的分区字段相同;
    • DataSourceWriteOptions.KEYGENERATOR_CLASS_OPT_KEY()配置为org.apache.hudi.keygen.NonpartitionedKeyGenerator
    • hoodie.datasource.hive_sync.partition_extractor_class配置为org.apache.hudi.hive.NonPartitionedExtractor

    Hudi同步到Hive创建的表如下

    CREATE EXTERNAL TABLE `nonpartitiondemo`(
      `_hoodie_commit_time` string,
      `_hoodie_commit_seqno` string,
      `_hoodie_record_key` string,
      `_hoodie_partition_path` string,
      `_hoodie_file_name` string,
      `age` bigint,
      `date` string,
      `location` string,
      `name` string,
      `sex` string,
      `ts` bigint)
    ROW FORMAT SERDE
      'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
    STORED AS INPUTFORMAT
      'org.apache.hudi.hadoop.HoodieParquetInputFormat'
    OUTPUTFORMAT
      'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
    LOCATION
      'file:/tmp/hudi-partitions/nonPartitionDemo'
    TBLPROPERTIES (
      'last_commit_time_sync'='20200816161558',
      'transient_lastDdlTime'='1597565767')
    

    查询表nonpartitiondemo

    2.4 Hive风格分区

    除了上述几种常见的分区方式,还有一种Hive风格分区格式,如location=beijing/sex=male格式,以location,sex作为分区字段,核心配置如下

    • DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY()配置为location,sex
    • hoodie.datasource.hive_sync.partition_fields配置为location,sex,与写入Hudi的分区字段相同;
    • DataSourceWriteOptions.KEYGENERATOR_CLASS_OPT_KEY()配置为org.apache.hudi.keygen.ComplexKeyGenerator
    • hoodie.datasource.hive_sync.partition_extractor_class配置为org.apache.hudi.hive.SlashEncodedDayPartitionValueExtractor
    • DataSourceWriteOptions.HIVE_STYLE_PARTITIONING_OPT_KEY()配置为true

    生成的Hudi数据集目录结构会为如下格式

    /location=beijing/sex=male
    

    Hudi同步到Hive创建的表如下

    CREATE EXTERNAL TABLE `hivestylepartitiondemo`(
      `_hoodie_commit_time` string,
      `_hoodie_commit_seqno` string,
      `_hoodie_record_key` string,
      `_hoodie_partition_path` string,
      `_hoodie_file_name` string,
      `age` bigint,
      `date` string,
      `name` string,
      `ts` bigint)
    PARTITIONED BY (
      `location` string,
      `sex` string)
    ROW FORMAT SERDE
      'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
    STORED AS INPUTFORMAT
      'org.apache.hudi.hadoop.HoodieParquetInputFormat'
    OUTPUTFORMAT
      'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
    LOCATION
      'file:/tmp/hudi-partitions/hiveStylePartitionDemo'
    TBLPROPERTIES (
      'last_commit_time_sync'='20200816172710',
      'transient_lastDdlTime'='1597570039')
    

    查询表hivestylepartitiondemo

    3. 总结

    本篇文章介绍了Hudi如何处理不同分区场景,上述配置的分区类配置可以满足绝大多数场景,当然Hudi非常灵活,还支持自定义分区解析器,具体可查看KeyGeneratorPartitionValueExtractor类,其中所有写入Hudi的分区字段生成器都是KeyGenerator的子类,所有同步至Hive的分区值解析器都是PartitionValueExtractor的子类。上述示例代码都已经上传至https://github.com/leesf/hudi-demos,该仓库会持续补充各种使用Hudi的Demo,方便开发者快速了解Hudi,构建企业级数据湖,欢迎star & fork。

  • 相关阅读:
    python+soket实现UDP协议的客户/服务端中文聊天程序
    如何实现PyQt5与QML响应彼此发送的信号?
    用 eric6 与 PyQt5 实现python的极速GUI编程(系列04)---- PyQt5自带教程:地址簿(address book)
    用 eric6 与 PyQt5 实现python的极速GUI编程(系列03)---- Drawing(绘图)(3)-- 画线
    用 eric6 与 PyQt5 实现python的极速GUI编程(系列03)---- Drawing(绘图)(2)-- 画点
    用 eric6 与 PyQt5 实现python的极速GUI编程(系列03)---- Drawing(绘图)(1)-- 绘写文字
    仿百度壁纸client(六)——完结篇之Gallery画廊实现壁纸预览已经项目细节优化
    软件概要设计说明书—模板
    Android--Handler的用法:在子线程中更新界面
    在PreferenceAcitity中使用Fragement时避免额外的Left和RightPadding
  • 原文地址:https://www.cnblogs.com/leesf456/p/13521694.html
Copyright © 2020-2023  润新知