• 典型相关分析相关资料


    典型相关分析的基本思想 Canonical Correlation Analysis

     

    CCA典型相关分析
    (canonical correlation analysis)利用综合变量对之间的相关关系来反映两组指标之间的总体相关性的多元统计分析方法。它的基本原理是:为了从总体上把握两组指标之间的相关关系,分别在两组变量中提取有代表性的两个综合变量U1和V1(分别为两个变量组中各变量的线性组合),利用这两个综合变量之间的相关关系来反映两组指标之间的总体相关性。

     

    Canonical Correlation Analysis典范相关分析/Canonical Correspondence Analysis典范相应分析

     

    简单相关系数描写叙述两组变量的相关关系的缺点:仅仅是孤立考虑单个X与单个Y间的相关,没有考虑X、Y变量组内部各变量间的相关。两组间有很多简单相关系数,使问题显得复杂,难以从总体描写叙述。典型相关是简单相关、多重相关的推广。典型相关是研究两组变量之间相关性的一种统计分析方法。也是一种降维技术。
    1936年,Hotelling提出典型相关分析。考虑两组变量的线性组合, 并研究它们之间的相关系数p(u,v).在全部的线性组合中, 找一对相关系数最大的线性组合, 用这个组合的单相关系数来表示两组变量的相关性, 叫做两组变量的典型相关系数, 而这两个线性组合叫做一对典型变量。在两组多变量的情形下, 须要用若干对典型变量才干全然反映出它们之间的相关性。下一步, 再在两组变量的与u1,v1不相关的线性组合中, 找一对相关系数最大的线性组合, 它就是第二对典型变量, 并且p(u2,v2)就是第二个典型相关系数。这样下去, 能够得到若干对典型变量, 从而提取出两组变量间的所有信息。
    典型相关分析的实质就是在两组随机变量中选取若干个有代表性的综合指标(变量的线性组合), 用这些指标的相关关系来表示原来的两组变量的相关关系。这在两组变量的相关性分析中, 能够起到合理的简化变量的作用; 当典型相关系数足够大时, 能够像回归分析那样, 由- 组变量的数值预測还有一组变量的线性组合的数值。

     

     

    典型关联分析(Canonical Correlation Analysis)

    [pdf版本号] 典型相关分析.pdf

    1. 问题

    在线性回归中,我们使用直线来拟合样本点,寻找n维特征向量X和输出结果(或者叫做label)Y之间的线性关系。当中clip_image002clip_image004。然而当Y也是多维时,或者说Y也有多个特征时,我们希望分析出X和Y的关系。

    当然我们仍然能够使用回归的方法来分析,做法例如以下:

    如果clip_image002[1]clip_image006,那么能够建立等式Y=AX例如以下

    clip_image008

    当中clip_image010,形式和线性回归一样,须要训练m次得到m个clip_image012

    这样做的一个缺点是,Y中的每一个特征都与X的全部特征关联,Y中的特征之间没有什么联系。

    我们想换一种思路来看这个问题,假设将X和Y都看成总体,考察这两个总体之间的关系。我们将总体表示成X和Y各自特征间的线性组合,也就是考察clip_image014clip_image016之间的关系。

    这种应用事实上非常多,举个简单的样例。我们想考察一个人解题能力X(解题速度clip_image018,解题正确率clip_image020)与他/她的阅读能力Y(阅读速度clip_image022,理解程度clip_image024)之间的关系,那么形式化为:

    clip_image026 clip_image028

    然后使用Pearson相关系数

    clip_image030

    来度量u和v的关系,我们期望寻求一组最优的解a和b,使得Corr(u, v)最大,这样得到的a和b就是使得u和v就有最大关联的权重。

    到这里,基本上介绍了典型相关分析的目的。

    2. CCA表示与求解

    给定两组向量clip_image032clip_image034(替换之前的x为clip_image032[1],y为clip_image034[1]),clip_image032[2]维度为clip_image036clip_image034[2]维度为clip_image038,默认clip_image040。形式化表演示样例如以下:

    clip_image042

    clip_image044是x的协方差矩阵;左上角是clip_image032[3]自己的协方差矩阵;右上角是clip_image046;左下角是clip_image048,也是clip_image050的转置;右下角是clip_image034[3]的协方差矩阵。

    与之前一样,我们从clip_image032[4]clip_image034[4]的总体入手,定义

    clip_image052 clip_image054

    我们能够算出u和v的方差和协方差:

    clip_image056 clip_image058 clip_image060

    上面的结果事实上非常好算,推导一下第一个吧:

    clip_image062

    最后,我们须要算Corr(u,v)了

    clip_image064

    我们期望Corr(u,v)越大越好,关于Pearson相关系数,《数据挖掘导论》给出了一个非常好的图来说明:

    clip_image066

    横轴是u,纵轴是v,这里我们期望通过调整a和b使得u和v的关系越像最后一个图越好。事实上第一个图和最后一个图有联系的,我们能够调整a和b的符号,使得从第一个图变为最后一个。

    接下来我们求解a和b。

    回忆在LDA中,也得到了类似Corr(u,v)的公式,我们在求解时固定了分母,来求分子(避免a和b同一时候扩大n倍仍然符号解条件的情况出现)。这里我们相同这么做。

    这个优化问题的条件是:

    Maximize clip_image068

    Subject to: clip_image070

    求解方法是构造Lagrangian等式,这里我简单推导例如以下:

    clip_image072

    求导,得

    clip_image074

    clip_image076

    令导数为0后,得到方程组:

    clip_image078

    clip_image080

    第一个等式左乘clip_image082,第二个左乘clip_image084,再依据clip_image086,得到

    clip_image088

    也就是说求出的clip_image090即是Corr(u,v),仅仅需找最大clip_image090[1]就可以。

    让我们把上面的方程组进一步简化,并写成矩阵形式,得到

    clip_image092

    clip_image094

    写成矩阵形式

    clip_image096

    clip_image098

    那么上式能够写作:

    clip_image100

    显然,又回到了求特征值的老路上了,仅仅要求得clip_image102的最大特征值clip_image104,那么Corr(u,v)和a和b都能够求出。

    在上面的推导过程中,我们如果了clip_image106clip_image108均可逆。普通情况下都是可逆的,仅仅有存在特征间线性相关时会出现不可逆的情况,在本文最后会提到不可逆的处理办法。

    再次审视一下,假设直接去计算clip_image102[1]的特征值,复杂度有点高。我们将第二个式子代入第一个,得

    clip_image110

    这样先对clip_image112求特征值clip_image114和特征向量clip_image116,然后依据第二个式子求得b。

    待会举个样例说明求解过程。

    如果依照上述过程,得到了clip_image090[2]最大时的clip_image118clip_image120。那么clip_image118[1]clip_image120[1]称为典型变量(canonical variates),clip_image090[3]即是u和v的相关系数。

    最后,我们得到u和v的等式为:

    clip_image122 clip_image124

    我们也能够接着去寻找第二组典型变量对,其最优化条件是

    Maximize clip_image126

    Subject to: clip_image128

    clip_image130

    事实上第二组约束条件就是clip_image132

    计算步骤同第一组计算方法,仅仅只是是clip_image090[4]clip_image112[1]的第二大特征值。

    得到的clip_image134clip_image136事实上也满足

    clip_image138 clip_image140

    总结一下,i和j分别表示clip_image142clip_image144得到结果

    clip_image146

    clip_image148

    3. CCA计算样例

    我们回到之前的评价一个人解题和其阅读能力的关系的样例。如果我们通过对样本计算协方差矩阵得到例如以下结果:

    clip_image150

    clip_image152

    然后求clip_image112[2],得

    clip_image154

    这里的A和前面的clip_image156中的A不是一回事(这里符号有点乱,不好意思)。

    然后对A求特征值和特征向量,得到

    clip_image158

    然后求b,之前我们说的方法是依据clip_image160求b,这里,我们也能够採用类似求a的方法来求b。

    回忆之前的等式

    clip_image092[1]

    clip_image094[1]

    我们将上面的式子代入以下的,得

    clip_image162

    然后直接对clip_image164求特征向量就可以,注意clip_image164[1]clip_image112[3]的特征值同样,这个能够自己证明下。

    无论使用哪种方法,

    clip_image166

    clip_image168

    这里我们得到a和b的两组向量,到这还没完,我们须要让它们满足之前的约束条件

    clip_image170

    这里的clip_image172应该是我们之前得到的VecA中的列向量的m倍,我们仅仅须要求得m,然后将VecA中的列向量乘以m就可以。

    clip_image174

    这里的clip_image176是VecA的列向量。

    clip_image178

    因此最后的a和b为:

    clip_image180

    第一组典型变量为

    clip_image182

    相关系数

    clip_image184

    第二组典型变量为

    clip_image186

    相关系数

    clip_image188

    这里的clip_image190(解题速度),clip_image192(解题正确率),clip_image194(阅读速度),clip_image196(阅读理解程度)。他们前面的系数意思不是特征对单个u或v的贡献比重,而是从u和v总体关系看,当两者关系最密切时,特征计算时的权重。

    4. Kernel Canonical Correlation Analysis(KCCA)

    通常当我们发现特征的线性组合效果不够好或者两组集合关系是非线性的时候,我们会尝试核函数方法,这里我们继续介绍Kernel CCA。

    在《支持向量机-核函数》那一篇中,大致介绍了一下核函数,这里再简单提一下:

    当我们对两个向量作内积的时候

    clip_image198

    我们能够使用clip_image200clip_image202来替代clip_image204clip_image206,比方原来的clip_image204[1]特征向量为clip_image208,那么

    我们能够定义

    clip_image210

    假设clip_image202[1]clip_image200[1]的构造一样,那么

    clip_image212

    clip_image214

    这样,仅通过计算x和y的内积的平方就能够达到在高维空间(这里为clip_image216)中计算clip_image218clip_image220内积的效果。

    由核函数,我们能够得到核矩阵K,当中

    clip_image222

    即第clip_image224行第clip_image226列的元素是第clip_image224[1]个和第clip_image226[1]个例子在核函数下的内积。

    一个非常好的核函数定义:

    clip_image228

    当中例子x有n个特征,经过clip_image218[1]变换后,从n维特征上升到了N维特征,当中每个特征是clip_image230

    回到CCA,我们在使用核函数之前

    clip_image232 clip_image234

    这里如果x和y都是n维的,引入核函数后,clip_image236clip_image238变为了N维。

    使用核函数后,u和v的公式为:

    clip_image240

    clip_image242

    这里的c和d都是N维向量。

    如今我们有样本clip_image244,这里的clip_image246表示样本x的第i个例子,是n维向量。

    依据前面说过的相关系数,构造拉格朗日公式例如以下:

    clip_image248

    当中

    clip_image250

    clip_image252

    然后让L对a求导,令导数等于0,得到(这一步我没有验证,待会从宏观上解释一下)

    clip_image254

    相同对b求导,令导数等于0,得到

    clip_image256

    求出c和d干嘛呢?c和d仅仅是clip_image258的系数而已,依照原始的CCA做法去做即可了呗,为了再引入clip_image260clip_image262

    回答这个问题要从核函数的意义上来说明。核函数初衷是希望在式子中有clip_image264,然后用K替换之,根本没有打算去计算出实际的clip_image258[1]。因此即是依照原始CCA的方式计算出了c和d,也是无用的,由于根本有没有实际的clip_image258[2]让我们去做clip_image266。还有一个原因是核函数比方高斯径向基核函数能够上升到无限维,N是无穷的,因此c和d也是无穷维的,根本没办法直接计算出来。我们的思路是在原始的空间中构造出权重clip_image260[1]clip_image262[1],然后利用clip_image258[3]clip_image260[2]clip_image262[2]上升到高维,他们在高维相应的权重就是c和d。

    尽管clip_image260[3]clip_image262[3]是在原始空间中(维度为例子个数M),但其作用点不是在原始特征上,而是原始例子上。看上面得出的c和d的公式就知道。clip_image260[4]通过控制每一个高维例子的权重,来控制c。

    好了,接下来我们看看使用clip_image260[5]clip_image262[4]后,u和v的变化

    clip_image268

    clip_image270

    clip_image272表示能够将第i个例子上升到的N维向量,clip_image274意义能够类比原始CCA的x。

    鉴于这样表示接下来会越来越复杂,改用矩阵形式表示。

    clip_image276

    简写为

    clip_image278

    当中X(M×N)为

    clip_image280

    我们发现

    clip_image282

    我们能够算出u和v的方差和协方差(这里实际上事先对样本clip_image204[2]clip_image284做了均值归0处理):

    clip_image286

    clip_image288

    clip_image290

    这里clip_image274[1]clip_image292维度能够不一样。

    最后,我们得到Corr(u,v)

    clip_image294

    能够看到,在将clip_image018[1]clip_image020[1]处理成clip_image296clip_image298后,得到的结果和之前形式基本一样,仅仅是将clip_image044[1]替换成了两个K乘积。

    因此,得到的结果也是一样的,之前是

    clip_image100[1]

    当中

    clip_image098[1]

    引入核函数后,得到

    clip_image100[2]

    当中

    clip_image300

    注意这里的两个w有点差别,前面的clip_image116[1]维度和x的特征数同样,clip_image302维度和y的特征数同样。后面的clip_image304维度和x的例子数同样,clip_image306维度和y的例子数同样,严格来说“clip_image304[1]维度=clip_image306[1]维度”。

    5. 其它话题

    1、当协方差矩阵不可逆时,怎么办?

    要进行regularization。

    一种方法是将前面的KCCA中的拉格朗日等式加上二次正则化项,即:

    clip_image308

    这样求导后得到的等式中,等式右边的矩阵一定是正定矩阵。

    另外一种方法是在Pearson系数的分母上增加正则化项,相同结果也一定可逆。

    clip_image310

    2、求Kernel矩阵效率不高怎么办?

    使用Cholesky decomposition压缩法或者部分Gram-Schmidt正交化法,。

    3、怎么使用CCA用来做预測?

      

    4、假设有多个集合怎么办?X、Y、Z…?怎么衡量多个样本集的关系?

    这个称为Generalization of the Canonical Correlation。方法是使得两两集合的距离差之和最小。能够參考文献2。

    6. 參考文献

    1、 http://www.stat.tamu.edu/~rrhocking/stat636/LEC-9.636.pdf

    2、 Canonical correlation analysis: An overview with application to learning methods. David R. Hardoon , Sandor Szedmak and John Shawe-Taylor

    3、 A kernel method for canonical correlation analysis. Shotaro Akaho

    4、 Canonical Correlation a Tutorial. Magnus Borga

    5、 Kernel Canonical Correlation Analysis. Max Welling

    http://www.cnblogs.com/jerrylead/archive/2011/06/20/2085491.html Canonical correlation
    From Wikipedia, the free encyclopedia

    In statistics, canonical correlation analysis, introduced by Harold Hotelling, is a way of making sense of cross-covariance matrices. If we have two sets of variables,  x_1, dots, x_n and  y_1, dots, y_m , and there are correlations among the variables, then canonical correlation analysis will enable us to find linear combinations of the  x  's and the  y  's which have maximum correlation with each other.

    Contents

    [hide]

    [edit] Definition

    Given two column vectors X = (x_1, dots, x_n)' and Y = (y_1, dots, y_m)' of random variables with finite second moments, one may define the cross-covariance Sigma _{XY} = operatorname{cov}(X, Y) to be the  n 	imes m matrix whose (i, j) entry is the covariance operatorname{cov}(x_i, y_j) . In practice, we would estimate the covariance matrix based on sampled data from X and Y (i.e. from a pair of data matrices).

    Canonical correlation analysis seeks vectors a and b such that the random variables a' X and b' Y maximize the correlation 
ho = operatorname{cor}(a' X, b' Y) . The random variables U = a' X and V = b' Y are the first pair of canonical variables. Then one seeks vectors maximizing the same correlation subject to the constraint that they are to be uncorrelated with the first pair of canonical variables; this gives the second pair of canonical variables. This procedure may be continued up to min{m,n} times.

    [edit] Computation

    [edit] Proof

    Let Sigma _{XX} = operatorname{cov}(X, X) and Sigma _{YY} = operatorname{cov}(Y, Y) . The parameter to maximize is

    

ho = frac{a' Sigma _{XY} b}{sqrt{a' Sigma _{XX} a} sqrt{b' Sigma _{YY} b}}.

    The first step is to define a change of basis and define

    
c = Sigma _{XX} ^{1/2} a,
    
d = Sigma _{YY} ^{1/2} b.

    And thus we have

    

ho = frac{c' Sigma _{XX} ^{-1/2} Sigma _{XY} Sigma _{YY} ^{-1/2} d}{sqrt{c' c} sqrt{d' d}}.

    By the Cauchy-Schwarz inequality, we have

    
c' Sigma _{XX} ^{-1/2} Sigma _{XY} Sigma _{YY} ^{-1/2} d leq left(c' Sigma _{XX} ^{-1/2} Sigma _{XY} Sigma _{YY} ^{-1/2} Sigma _{YY} ^{-1/2} Sigma _{YX} Sigma _{XX} ^{-1/2} c 
ight)^{1/2} left(d' d 
ight)^{1/2},
    

ho leq frac{left(c' Sigma _{XX} ^{-1/2} Sigma _{XY} Sigma _{YY} ^{-1} Sigma _{YX} Sigma _{XX} ^{-1/2} c 
ight)^{1/2}}{left(c' c 
ight)^{1/2}}.

    There is equality if the vectors d and Sigma _{YY} ^{-1/2} Sigma _{YX} Sigma _{XX} ^{-1/2} c are collinear. In addition, the maximum of correlation is attained if c is the eigenvector with the maximum eigenvalue for the matrix Sigma _{XX} ^{-1/2} Sigma _{XY} Sigma _{YY} ^{-1} Sigma _{YX} Sigma _{XX} ^{-1/2} (see Rayleigh quotient). The subsequent pairs are found by using eigenvalues of decreasing magnitudes. Orthogonality is guaranteed by the symmetry of the correlation matrices.

    [edit] Solution

    The solution is therefore:

    • c is an eigenvector of Sigma _{XX} ^{-1/2} Sigma _{XY} Sigma _{YY} ^{-1} Sigma _{YX} Sigma _{XX} ^{-1/2}
    • d is proportional to Sigma _{YY} ^{-1/2} Sigma _{YX} Sigma _{XX} ^{-1/2} c

    Reciprocally, there is also:

    • d is an eigenvector of Sigma _{YY} ^{-1/2} Sigma _{YX} Sigma _{XX} ^{-1} Sigma _{XY} Sigma _{YY} ^{-1/2}
    • c is proportional to Sigma _{XX} ^{-1/2} Sigma _{XY} Sigma _{YY} ^{-1/2} d

    Reversing the change of coordinates, we have that

    • a is an eigenvector of Sigma _{XX} ^{-1} Sigma _{XY} Sigma _{YY} ^{-1/2} Sigma _{YX}
    • b is an eigenvector of Sigma _{YY} ^{-1} Sigma _{YX} Sigma _{XX} ^{-1} Sigma _{XY}
    • a is proportional to Sigma _{XX} ^{-1} Sigma _{XY} b
    • b is proportional to Sigma _{YY} ^{-1/2} Sigma _{YX} a

    The canonical variables are defined by:

    U = c' Sigma _{XX} ^{-1/2} X = a' X
    V = d' Sigma _{YY} ^{-1/2} Y = b' Y

    [edit] Hypothesis testing

    Each row can be tested for significance with the following method. Since the correlations are sorted, saying that row i is zero implies all further correlations are also zero. If we have p independent observations in a sample and widehat{
ho}_i is the estimated correlation for i = 1,dots, min{m,n} . For the i th row, the test statistic is:

    chi ^2 = - left( p - 1 - frac{1}{2}(m + n + 1)
ight) ln prod _ {j = i} ^p (1 - widehat{
ho}_j^2),

    which is asymptotically distributed as a chi-squared with (m - i + 1)(n - i + 1) degrees of freedom for large p .[1] Since all the correlations from  min{m,n} to p are logically zero (and estimated that way also) the product for the terms after this point is irrelevant.

    [edit] Practical uses

    A typical use for canonical correlation in the experimental context is to take two sets of variables and see what is common amongst the two sets. For example in psychological testing, you could take two well established multidimensional personality tests such as the Minnesota Multiphasic Personality Inventory (MMPI) and the NEO. By seeing how the MMPI factors relate to the NEO factors, you could gain insight into what dimensions were common between the tests and how much variance was shared. For example you might find that an extraversion or neuroticism dimension accounted for a substantial amount of shared variance between the two tests.

    One can also use canonical correlation analysis to produce a model equation which relates two sets of variables, for example a set of performance measures and a set of explanatory variables, or a set of outputs and set of inputs. Constraint restrictions can be imposed on such a model to ensure it reflects theoretical requirements or intuitively obvious conditions. This type of model is known as a maximum correlation model.[2]

    Visualization of the results of canonical correlation is usually through bar plots of the coefficients of the two sets of variables for the pairs of canonical variates showing significant correlation. Some authors suggest that they are best visualized by plotting them as heliographs, a circular format with ray like bars, with each half representing the two sets of variables.[3]

    [edit] Connection to principal angles

    Assuming that X = (x_1, dots, x_n)' and Y = (y_1, dots, y_m)' have zero expected values, i.e., operatorname{E}(X)=operatorname{E}(Y)=0 , their covariance matrices Sigma _{XX} =operatorname{Cov}(X,X) = operatorname{E}[X X'] and Sigma _{YY} =operatorname{Cov}(Y,Y) = operatorname{E}[Y Y'] can be viewed as Gram matrices in an inner product, see Covariance#Relationship_to_inner_products, for the columns of X and Y , correspondingly. The definition of the canonical variables U and V is equivalent to the definition of principal vectors for the pair of subspaces spanned by the columns of X and Y with respect to this inner product. The canonical correlations operatorname{cor}(U,V) is equal to the cosine of principal angles.

    [edit] See also

     

    Canonical Correlation Analysis


    Canonical correlation analysis (CCA) is a way of measuring the linear relationship between two multidimensional variables. It finds two bases, one for each variable, that are optimal with respect to correlations and, at the same time, it finds the corresponding correlations. In other words, it finds the two bases in which the correlation matrix between the variables is diagonal and the correlations on the diagonal are maximized. The dimensionality of these new bases is equal to or less than the smallest dimensionality of the two variables.

    For more information on CCA, please read my on-line tutorial (or the PDF version).

    Matlab functions

    Please email your comments to me.

     

     

     

    Canonical Correspondence Analysis

    Description

    Performs a Canonical Correspondence Analysis.

    Usage

    cca(sitspe, sitenv, scannf = TRUE, nf = 2)  

    Arguments

    sitspe a data frame for correspondence analysis, typically a sites x species table
    sitenv a data frame containing variables, typically a sites x environmental variables table
    scannf a logical value indicating whether the eigenvalues bar plot should be displayed
    nf if scannf FALSE, an integer indicating the number of kept axes

    Value

    returns an object of class pcaiv. See pcaiv

    Author(s)

    Daniel Chessel
    Anne B Dufour
    dufour@biomserv.univ-lyon1.fr

    References

    Ter Braak, C. J. F. (1986) Canonical correspondence analysis : a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167–1179.

    Ter Braak, C. J. F. (1987) The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio, 69, 69–77.

    Chessel, D., Lebreton J. D. and Yoccoz N. (1987) Propriétés de l'analyse canonique des correspondances. Une utilisation en hydrobiologie. Revue de Statistique Appliquée, 35, 55–72.

    See Also

    cca in the package vegan

    Examples

    data(rpjdl) millog <- log(rpjdl$mil + 1) iv1 <- cca(rpjdl$fau, millog, scan = FALSE) plot(iv1) # analysis with c1 - as - li -ls # projections of inertia axes on PCAIV axes s.corcircle(iv1$as) # Species positions s.label(iv1$c1, 2, 1, clab = 0.5, xlim = c(-4,4)) # Sites positions at the weighted mean of present species s.label(iv1$ls, 2, 1, clab = 0, cpoi = 1, add.p = TRUE) # Prediction of the positions by regression on environmental variables s.match(iv1$ls, iv1$li, 2, 1, clab = 0.5) # analysis with fa - l1 - co -cor # canonical weights giving unit variance combinations s.arrow(iv1$fa) # sites position by environmental variables combinations # position of species by averaging s.label(iv1$l1, 2, 1, clab = 0, cpoi = 1.5) s.label(iv1$co, 2, 1, add.plot = TRUE) s.distri(iv1$l1, rpjdl$fau, 2, 1, cell = 0, csta = 0.33) s.label(iv1$co, 2, 1, clab = 0.75, add.plot = TRUE) # coherence between weights and correlations par(mfrow = c(1,2)) s.corcircle(iv1$cor, 2, 1) s.arrow(iv1$fa, 2, 1) par(mfrow = c(1,1))  

    Worked out examples

    > library(ade4) > ### Name: cca > ### Title: Canonical Correspondence Analysis > ### Aliases: cca > ### Keywords: multivariate > > ### ** Examples > > data(rpjdl) > millog <- log(rpjdl$mil + 1) > iv1 <- cca(rpjdl$fau, millog, scan = FALSE) > plot(iv1)  
    典型相关分析CCA
    > > # analysis with c1 - as - li -ls > # projections of inertia axes on PCAIV axes > s.corcircle(iv1$as)  
    典型相关分析CCA
    > > # Species positions > s.label(iv1$c1, 2, 1, clab = 0.5, xlim = c(-4,4)) > # Sites positions at the weighted mean of present species > s.label(iv1$ls, 2, 1, clab = 0, cpoi = 1, add.p = TRUE)  
    典型相关分析CCA
    > > # Prediction of the positions by regression on environmental variables > s.match(iv1$ls, iv1$li, 2, 1, clab = 0.5)  
    典型相关分析CCA
    > > # analysis with fa - l1 - co -cor > # canonical weights giving unit variance combinations > s.arrow(iv1$fa)  
    典型相关分析CCA
    > > # sites position by environmental variables combinations > # position of species by averaging > s.label(iv1$l1, 2, 1, clab = 0, cpoi = 1.5)  
    典型相关分析CCA
    > s.label(iv1$co, 2, 1, add.plot = TRUE)  
    典型相关分析CCA
    > > s.distri(iv1$l1, rpjdl$fau, 2, 1, cell = 0, csta = 0.33)  
    典型相关分析CCA
    > s.label(iv1$co, 2, 1, clab = 0.75, add.plot = TRUE)  
    典型相关分析CCA
    > > # coherence between weights and correlations > par(mfrow = c(1,2)) > s.corcircle(iv1$cor, 2, 1)  
    典型相关分析CCA
    > s.arrow(iv1$fa, 2, 1)  
    典型相关分析CCA
    > par(mfrow = c(1,1)) 
      
      
    (一)CCA方法简单介绍:
     典范相应分析(canonical correspondence analusis, CCA),是基于相应分析发展而来的一种排序方法,将相应分析与多元回归分析相结合,每一步计算均与环境因子进行回归,又称多元直接梯度分析。其基本思路是在相应分析的迭代过程中,每次得到的样方排序坐标值均与环境因子进行多元线性回归。CCA要求两个数据矩阵,一个是植被数据矩阵,一个是环境数据矩阵。首先计算出一组样方排序值和种类排序值(同相应分析),然后将样方排序值与环境因子用回归分析方法结合起来,这样得到的样方排序值即反映了样方种类组成及生态重要值对群落的作用,同一时候也反映了环境因子的影响,再用样方排序值加权平均求种类排序值,使种类排序坐标值值也简单介绍地与环境因子相联系。其算法可由Canoco软件高速实现。
     最大长处:CCA是一种基于单峰模型的排序方法,样方排序与对象排序相应分析,并且在排序过程中结合多个环境因子,因此能够把样方、对象与环境因子的排序结果表示在同一排序图上。
     缺点:存在“弓形效应”。克服弓形效应能够採用除趋势典范相应分析(detrended canonical correspondence, DCCA).
     结果可信性:查看累计贡献率及环境与研究对象前两个排序轴之间的相关性。
    (二)CCA排序图解释:箭头表示环境因子,箭头所处的象限表示环境因子与排序轴之间的正负相关性,箭头连线的长度代表着某个环境因子与研究对象分布相关程度的大小,连线越长,代表这个环境因子对研究对象的分布影响越大。箭头连线与排序轴的家教代表这某个环境因子与排序轴的相关性大小,夹角越小,相关性越高。
    (三)关键问题:
     (1)RDA或CCA的选择问题:RDA是基于线性模型,CCA是基于单峰模型。一般我们会选择CCA来做直接梯度分析。可是假设CCA排序的效果不太好,就能够考虑是不是用RDA分析。RDA或CCA选择原则:先用species-sample资料做DCA分析,看分析结果中Lengths of gradient 的第一轴的大小,假设大于4.0,就应该选CCA,假设3.0-4.0之间,选RDA和CCA均可,假设小于3.0, RDA的结果要好于CCA。
     (2)计算单个环境因子的贡献率:CCA分析里面所得到的累计贡献率是全部环境因子的贡献率,怎么得到每一个环境因子的贡献率:生成三个矩阵,第一个是物种样方矩阵,第二个是目标环境因子矩阵,第三个是剔除目标环境因子矩阵后的环境因子矩阵。分别输入Canoco软件中,这样CCA分析得到的特征根贡献率即是单个目标环境因子的贡献率。
    參考书目:
    张金屯 数量生态学 科学出版社 2004
    Jan Leps & Peter Smilauer. Multivariate analysis of ecological data using CANOCO. Cambridge University Press. 2003
     
     
     
    本文引用地址:http://www.sciencenet.cn/blog/user_content.aspx?id=27852
     
     典范相应分析(CCA
     (一)CCA方法简单介绍:
     典范相应分析(canonical correspondence analusis, CCA),是基于相应分析发展而来的一种排序方法,将相应分析与多元回归分析相结合,每一步计算均与环境因子进行回归,又称多元直接梯度分析。其基本思路是在相应分析的迭代过程中,每次得到的样方排序坐标值均与环境因子进行多元线性回归。CCA要求两个数据矩阵,一个是植被数据矩阵,一个是环境数据矩阵。 首先计算出一组样方排序值和种类排序值(同相应分析),然后将样方排序值与环境因子用回归分析方法结合起来,这样得到的样方排序值即反映了样方种类组成及生态重要值对群落的作用,同一时候也反映了环境因子的影响,再用样方排序值加权平均求种类排序值,使种类排序坐标值值也简单介绍地与环境因子相联系。其算法可由Canoco软件高速实现。
     最大长处:CCA是一种基于单峰模型的排序方法,样方排序与对象排序相应分析,并且在排序过程中结合多个环境因子,因此能够把样方、对象与环境因子的排序结果表示在同一排序图上。
     缺点:存在“弓形效应”。克服弓形效应能够採用除趋势典范相应分析(detrended canonical correspondence, DCCA.
     结果可信性:查看累计贡献率及环境与研究对象前两个排序轴之间的相关性。
     (二)CCA排序图解释
     箭头表示环境因子,箭头所处的象限表示环境因子与排序轴之间的正负相关性,箭头连线的长度代表着某个环境因子与研究对象分布相关程度的大小,连线越长,代表这个环境因子对研究对象的分布影响越大。箭头连线与排序轴的家教代表这某个环境因子与排序轴的相关性大小,夹角越小,相关性越高。
     (三)关键问题:
     1RDACCA的选择问题:RDA是基于线性模型,CCA是基于单峰模型。一般我们会选择CCA来做直接梯度分析。可是假设CCA排序的效果不太好,就能够考虑是不是用RDA分析。RDACCA选择原则:先用species-sample资料做DCA分析,看分析结果中Lengths of gradient 的第一轴的大小,假设大于4.0,就应该选CCA,假设3.0-4.0之间,选RDACCA均可,假设小于3.0, RDA的结果要好于CCA
     2)计算单个环境因子的贡献率:CCA分析里面所得到的累计贡献率是全部环境因子的贡献率,怎么得到每一个环境因子的贡献率:生成三个矩阵,第一个是物种样方矩阵,第二个是目标环境因子矩阵,第三个是剔除目标环境因子矩阵后的环境因子矩阵。分别输入Canoco软件中,这样CCA分析得到的特征根贡献率即是单个目标环境因子的贡献率。
     
        

    典型相关分析 Canonical Correlation Analysis(CCA)

    • 两个随机变量Y与X 简单相关系数
    • 一个随机变量Y与一组随机变量X1,X2……,Xp 多重相关(复相关系数)
    • 一组随机变量Y1,Y2,……,Yq与还有一组随机变量X1,X2,……,Xp 典型相关系数
    典型相关是研究两组变量之间相关性的一种统计分析方法。也是一种降维技术。
    http://s16.sinaimg.cn/orignal/4fb7d89243ef2841a279f
     http://s5.sinaimg.cn/orignal/4fb7d89243ef2842f6124
     http://s3.sinaimg.cn/orignal/4fb7d89243ef2f0399d22
     

    简单相关系数描写叙述两组变量的相关关系的缺点:
    • 仅仅是孤立考虑单个X与单个Y间的相关,没有考虑X,Y变量组内部各变量间的相关。
    • 两组间有很多简单相关系数(实例为30个),使问题显得复杂,难以从总体描写叙述。(复相关系数也如此
    http://s6.sinaimg.cn/orignal/4fb7d89243ef2f848c225

  • 相关阅读:
    机器学习作业(八)异常检测与推荐系统——Matlab实现
    机器学习笔记(九)异常检测与推荐系统
    Coursera 吴恩达 机器学习 学习笔记
    机器学习作业(七)非监督学习——Matlab实现
    机器学习笔记(八)非监督学习

    希尔排序
    霍纳算法的散列函数
    javascript判断给定字符串是否是回文
    JavaScript链表
  • 原文地址:https://www.cnblogs.com/lcchuguo/p/4009162.html
Copyright © 2020-2023  润新知