• SVM


    KKT条件

    带有等式约束和不等式约束的凸函数优化。

     LIBSVM

    LIBSVM is an integrated software for support vector classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM). It supports multi-class classification.

    Usage: svm-train [options] training_set_file [model_file]
    options:
    -s svm_type : set type of SVM (default 0)
    0 -- C-SVC (multi-class classification)
    1 -- nu-SVC (multi-class classification)
    2 -- one-class SVM
    3 -- epsilon-SVR (regression)
    4 -- nu-SVR (regression)
    -t kernel_type : set type of kernel function (default 2)
    0 -- linear: u'*v
    1 -- polynomial: (gamma*u'*v + coef0)^degree
    2 -- radial basis function: exp(-gamma*|u-v|^2)
    3 -- sigmoid: tanh(gamma*u'*v + coef0)
    4 -- precomputed kernel (kernel values in training_set_file)
    -d degree : set degree in kernel function (default 3)
    -g gamma : set gamma in kernel function (default 1/num_features)
    -r coef0 : set coef0 in kernel function (default 0)
    -c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
    -n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
    -p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)
    -m cachesize : set cache memory size in MB (default 100)
    -e epsilon : set tolerance of termination criterion (default 0.001)
    -h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)
    -b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
    -wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)
    -v n: n-fold cross validation mode
    -q : quiet mode (no outputs)

    c-svc中的c为惩罚参数,C值大时表示对误分类的惩罚增大。

    nu-svc中nu的范围是0到1,还有nu是错分样本所占比例的上界,支持向量所占比列的下界。

    The main motivation for the nu versions of SVM is that it has a has a more meaningful interpretation. This is because nu represents an upper bound on the fraction of training samples which are errors (badly predicted) and a lower bound on the fraction of samples which are support vectors. Some users feel nu is more intuitive to use than C or epsilon. 

  • 相关阅读:
    157 判断字符串是否没有重复字符
    53 翻转字符串
    671 循环单词
    8 旋转字符串
    39 恢复旋转字符串
    6 合并排序数组 Ⅱ
    64 合并排序数组
    60 搜索插入位置
    141 x的平方根
    TCSRM 593 div2(1000)(dp)
  • 原文地址:https://www.cnblogs.com/larry-xia/p/11721529.html
Copyright © 2020-2023  润新知