#!/usr/bin/env python
# coding: utf-8
# ### 导入随面森林的相关库文件.
from sklearn.ensemble import RandomForestClassifier # 导入随机森林的包
# from sklearn.model_selection import train_test_split # 这个用于后台数据的分割
from sklearn.preprocessing import StandardScaler # 数据的标准化
import numpy as np
#导入iris数据
# * Sepal.Length(花萼长度),单位是cm;
# * Sepal.Width(花萼宽度),单位是cm;
# * Petal.Length(花瓣长度),单位是cm;
# * Petal.Width(花瓣宽度),单位是cm;
# * 种类:Iris Setosa(山鸢尾)、Iris Versicolour(杂色鸢尾),以及Iris Virginica(维吉尼亚鸢尾) 共三种
from sklearn import datasets # 导入iris自带数据库文件
iris_data = datasets.load_iris()
iris_feature = iris_data.data[:151:2]
iris_target = iris_data.target[:151:2]
# 数据标准化
scaler = StandardScaler() # 标准化转换
# Compute the mean and std to be used for later scaling.
scaler.fit(iris_feature) # 训练标准化对象
print(type(iris_target))
iris_feature = scaler.transform(iris_feature) # 转换数据集
# feature_train, feature_test, target_train, target_test = train_test_split(traffic_feature, traffic_target,test_size=0.3, random_state=0)
# 数据训练
clf = RandomForestClassifier()
clf.fit(iris_feature, iris_target)
# predict_results = clf.predict(feature_test)
# 数据为 0 号花
test_feature = np.array([5.5,3.5,1.3,0.2]).reshape(1,-1) # 变为一个矩阵,是1行,n列,n值由最后的值来确定,所以这里采用-1
print (test_feature)
# scaler.fit(test_feature) # 训练标准化对象
target_feature = scaler.transform(test_feature) # 转换数据集
print (clf.predict(target_feature))