• hdu--1104--Remainder(简单的bfs)


    Remainder

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 4078    Accepted Submission(s): 1014


    Problem Description
    Coco is a clever boy, who is good at mathematics. However, he is puzzled by a difficult mathematics problem. The problem is: Given three integers N, K and M, N may adds (‘+’) M, subtract (‘-‘) M, multiples (‘*’) M or modulus (‘%’) M (The definition of ‘%’ is given below), and the result will be restored in N. Continue the process above, can you make a situation that “[(the initial value of N) + 1] % K” is equal to “(the current value of N) % K”? If you can, find the minimum steps and what you should do in each step. Please help poor Coco to solve this problem. 

    You should know that if a = b * q + r (q > 0 and 0 <= r < q), then we have a % q = r.
     
    Input
    There are multiple cases. Each case contains three integers N, K and M (-1000 <= N <= 1000, 1 < K <= 1000, 0 < M <= 1000) in a single line.

    The input is terminated with three 0s. This test case is not to be processed.
     
    Output
    For each case, if there is no solution, just print 0. Otherwise, on the first line of the output print the minimum number of steps to make “[(the initial value of N) + 1] % K” is equal to “(the final value of N) % K”. The second line print the operations to do in each step, which consist of ‘+’, ‘-‘, ‘*’ and ‘%’. If there are more than one solution, print the minimum one. (Here we define ‘+’ < ‘-‘ < ‘*’ < ‘%’. And if A = a1a2...ak and B = b1b2...bk are both solutions, we say A < B, if and only if there exists a P such that for i = 1, ..., P-1, ai = bi, and for i = P, ai < bi)
     
    Sample Input
    2 2 2
    -1 12 1
    0 0 0 0
     
    Sample Output
    0
    2
    *+
     1 /*
     2     Name: hdu--1104--Remainder
     3     Copyright: ©2017 日天大帝
     4     Author: 日天大帝
     5     Date: 22/04/17 09:11
     6     Description: bfs
     7                 a = b * q + r (q > 0 and 0 <= r < q),
     8                 题上的取余运算和%运算不一样,%运算能产生负值所以要 (n%k+k)%k这样,才等于题意的取余
     9                 这个题用vis标记产生过的数据,同时用%km和%k进行剪枝优化 
    10                  
    11 */
    12 #include<cstring>
    13 #include<iostream>
    14 #include<queue>
    15 #include<string> 
    16 using namespace std;
    17 struct node{
    18     int num,steps;
    19     string str;
    20 };
    21 const int MAX = 1005;
    22 bool vis[MAX];
    23 int n,m,k,mk,final_cmp;
    24 void bfs(){
    25     node start;
    26     start.num = n;
    27     start.str = "";
    28     start.steps = 0;
    29     vis[(n%k+k)%k] = 1;
    30     queue<node> q;
    31     q.push(start);
    32     
    33     while(!q.empty()){
    34         node a,temp = q.front();q.pop();
    35         if(final_cmp == ((temp.num%k)+k)%k){
    36             cout<<temp.steps<<endl<<temp.str<<endl;
    37             return ;
    38         }
    39         for(int i=0; i<4; ++i){
    40             a = temp;
    41             if(i == 0){
    42                 a.num += m;
    43                 a.str += '+';
    44             }else if(i == 1){
    45                 a.num -= m;
    46                 a.str += '-' ;
    47             }else if(i == 2){
    48                 a.num *= m;
    49                 a.str += '*';
    50             }else{
    51                 a.num = (a.num%m+m)%m;
    52                 a.str += '%' ;
    53             }
    54             a.num %= mk;//%k之后%m结果就错啦,10%(15) !=10%3%5
    55             if(vis[(a.num%k+k)%k])continue;//%k缩小范围剪枝 
    56             a.steps++;
    57             vis[(a.num%k+k)%k] = 1;
    58             q.push(a);
    59         }
    60     }
    61     cout<<"0"<<endl;
    62 }
    63 int main(){
    64     ios::sync_with_stdio(false);
    65     
    66     while(cin>>n>>k>>m,n||m||k){//输入有正负不能用n+m+k 
    67         memset(vis,0,sizeof(vis));
    68         mk = m*k;
    69         final_cmp = ((n+1)%k+k)%k;
    70         bfs() ;
    71     }
    72     return 0;
    73 }
  • 相关阅读:
    闭包装饰器与递归
    内置函数学习
    可迭代对象 迭代器 生成器 推导式 匿名函数
    函数基础
    python文件操作
    深浅copy与小数据池
    python数据类型
    python基础语法
    view视图函数的书写 请求与响应相关
    LeetCode OJ:Rotate Image(旋转图片)
  • 原文地址:https://www.cnblogs.com/langyao/p/6747002.html
Copyright © 2020-2023  润新知