• 内部排序算法相关优化及总结(二)


    1快排优化

    template<class T, template <class>class Cmp = Great >
    void FastSortPerfect(T *arr, size_t n, int first, int last)
    {
        assert(arr);
        if (first < 0 || last >= n || first>last)
            return;
        int beg = first;
        int end = last;
        if (end - beg < 13)
        {
            InsertSort(arr + first, last - first+1);
            return;
        }
        while (beg < end)
        {
            while (beg < end&&Cmp<T>()(arr[end], arr[beg]))
            {
                --end;
            }
            swap(arr[beg], arr[end]);
            while (beg < end && (Cmp<T>()(arr[end], arr[beg])))
            {
                ++beg;
            }
            swap(arr[beg], arr[end]);
        }
        //beg == end ==  中间元素
    
        FastSortPerfect(arr, n, first, beg - 1);
        FastSortPerfect(arr, n, beg + 1, last);
    }

    2归并优化

    //[)[)
    template<class T,template<class>class Cmp = Great>
    void MerGe(T * arr, int start, int cir, int end)
    {
        assert(arr);
        int newLen = end - cir;
        int * newArr = new int[newLen];
        //保存后半部分值
        for (int i = cir; i < end; ++i)
        {
            newArr[i-cir] = arr[i];
        }
        //将后半部分并入元数组
        while (newLen&&cir-start)
        {
            //if (newArr[newLen - 1]>arr[cir - 1])
            if (Cmp<T>()(newArr[newLen - 1], arr[cir - 1]))
            {
                arr[--end] = newArr[newLen - 1];
                newLen--;
            }
            else
            {
                arr[--end] = arr[cir - 1];
                cir--;
            }
        }
        //如果后半部分有剩余,那么直接加入前半部分
        //否则就不处理,因为本身就是在原数组中处理的
        if (newLen)
        {
            for (int i = 0; i < newLen; ++i)
            {
                arr[start] = newArr[i];
            }
        }
        delete[]newArr;
    }
    //
    template<class T, template<class> class Cmp = Great>
    void MergeSort2(T array[],size_t n)
    {
        int step = 2;
        while (step < n*2)
        {
            int start = 0;
            while (start+step/2 <n)
            {
                int end = start + step;
                if (end > n)
                    end = n;
                MerGe<T>(array, start, start+step/2, end);
                start = end;
            }
            step *= 2;
        }
    }

    3时间空间复杂度对比

  • 相关阅读:
    jQuery实现复选框全选、全不选、反选问题解析
    春节回来后至今的工作汇总
    后台管理的权限
    谨记:新增逻辑和编辑逻辑的相同和不同
    html5的本地数据库
    php做api接口的一些随笔
    js setTimeout
    在jquery选中器中使用变量
    jQuery ajax用get方法传递给api数组
    关键词处理,表格内容分类处理
  • 原文地址:https://www.cnblogs.com/lang5230/p/lang_bit.html
Copyright © 2020-2023  润新知