• POJ 2778 DNA Sequence(AC自动机+矩阵加速)


    DNA Sequence
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 9899   Accepted: 3717

    Description

    It's well known that DNA Sequence is a sequence only contains A, C, T and G, and it's very useful to analyze a segment of DNA Sequence,For example, if a animal's DNA sequence contains segment ATC then it may mean that the animal may have a genetic disease. Until now scientists have found several those segments, the problem is how many kinds of DNA sequences of a species don't contain those segments. 

    Suppose that DNA sequences of a species is a sequence that consist of A, C, T and G,and the length of sequences is a given integer n. 

    Input

    First line contains two integer m (0 <= m <= 10), n (1 <= n <=2000000000). Here, m is the number of genetic disease segment, and n is the length of sequences. 

    Next m lines each line contain a DNA genetic disease segment, and length of these segments is not larger than 10. 

    Output

    An integer, the number of DNA sequences, mod 100000.

    Sample Input

    4 3
    AT
    AC
    AG
    AA
    

    Sample Output

    36

    Source

     
     
     
    A自动机。
     
    要求长度为n,不包含病毒串的个数。
     
     
    首先利用AC自动机实现状态的转移。
     
    AC自动机其实就和状态机类似的,可以产生L个状态。
    然后根据状态间能不能转移,构造一个矩阵。
     
    最后矩阵快速幂求解
     
    //============================================================================
    // Name        : HDU.cpp
    // Author      : 
    // Version     :
    // Copyright   : Your copyright notice
    // Description : Hello World in C++, Ansi-style
    //============================================================================
    
    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    #include <queue>
    using namespace std;
    struct Matrix
    {
        unsigned long long mat[40][40];
        int n;
        Matrix(){}
        Matrix(int _n)
        {
            n=_n;
            for(int i=0;i<n;i++)
                for(int j=0;j<n;j++)
                    mat[i][j] = 0;
        }
        Matrix operator *(const Matrix &b)const
        {
            Matrix ret = Matrix(n);
            for(int i=0;i<n;i++)
                for(int j=0;j<n;j++)
                    for(int k=0;k<n;k++)
                        ret.mat[i][j]+=mat[i][k]*b.mat[k][j];
            return ret;
        }
    };
    unsigned long long pow_m(unsigned long long a,int n)
    {
        unsigned long long ret=1;
        unsigned long long tmp = a;
        while(n)
        {
            if(n&1)ret*=tmp;
            tmp*=tmp;
            n>>=1;
        }
        return ret;
    }
    Matrix pow_M(Matrix a,int n)
    {
        Matrix ret = Matrix(a.n);
        for(int i=0;i<a.n;i++)
            ret.mat[i][i] = 1;
        Matrix tmp = a;
        while(n)
        {
            if(n&1)ret=ret*tmp;
            tmp=tmp*tmp;
            n>>=1;
        }
        return ret;
    }
    struct Trie
    {
        int next[40][26],fail[40];
        bool end[40];
        int root,L;
        int newnode()
        {
            for(int i = 0;i < 26;i++)
                next[L][i] = -1;
            end[L++] = false;
            return L-1;
        }
        void init()
        {
            L = 0;
            root = newnode();
        }
        void insert(char buf[])
        {
            int len = strlen(buf);
            int now = root;
            for(int i = 0;i < len;i++)
            {
                if(next[now][buf[i]-'a'] == -1)
                    next[now][buf[i]-'a'] = newnode();
                now = next[now][buf[i]-'a'];
            }
            end[now] = true;
        }
        void build()
        {
            queue<int>Q;
            fail[root]=root;
            for(int i = 0;i < 26;i++)
                if(next[root][i] == -1)
                    next[root][i] = root;
                else
                {
                    fail[next[root][i]] = root;
                    Q.push(next[root][i]);
                }
            while(!Q.empty())
            {
                int now = Q.front();
                Q.pop();
                if(end[fail[now]])end[now]=true;
                for(int i = 0;i < 26;i++)
                    if(next[now][i] == -1)
                        next[now][i] = next[fail[now]][i];
                    else
                    {
                        fail[next[now][i]] = next[fail[now]][i];
                        Q.push(next[now][i]);
                    }
            }
        }
        Matrix getMatrix()
        {
            Matrix ret = Matrix(L+1);
            for(int i = 0;i < L;i++)
                for(int j = 0;j < 26;j++)
                    if(end[next[i][j]]==false)
                        ret.mat[i][next[i][j]] ++;
            for(int i = 0;i < L+1;i++)
                ret.mat[i][L] = 1;
            return ret;
        }
        void debug()
        {
            for(int i = 0;i < L;i++)
            {
                printf("id = %3d,fail = %3d,end = %3d,chi = [",i,fail[i],end[i]);
                for(int j = 0;j < 26;j++)
                    printf("%2d",next[i][j]);
                printf("]
    ");
            }
        }
    };
    char buf[10];
    Trie ac;
    int main()
    {
    //    freopen("in.txt","r",stdin);
    //    freopen("out.txt","w",stdout);
        int n,L;
        while(scanf("%d%d",&n,&L)==2)
        {
            ac.init();
            for(int i = 0;i < n;i++)
            {
                scanf("%s",buf);
                ac.insert(buf);
            }
            ac.build();
            Matrix a = ac.getMatrix();
            a = pow_M(a,L);
            unsigned long long res = 0;
            for(int i = 0;i < a.n;i++)
                res += a.mat[0][i];
            res--;
    
            /*
             * f[n]=1 + 26^1 + 26^2 +...26^n
             * f[n]=26*f[n-1]+1
             * {f[n] 1} = {f[n-1] 1}[26 0;1 1]
             * 数是f[L]-1;
             * 此题的L<2^31.矩阵的幂不能是L+1次,否则就超时了
             */
            a = Matrix(2);
            a.mat[0][0]=26;
            a.mat[1][0] = a.mat[1][1] = 1;
            a=pow_M(a,L);
            unsigned long long ans=a.mat[1][0]+a.mat[0][0];
            ans--;
            ans-=res;
            cout<<ans<<endl;
        }
        return 0;
    }
     
     
     
     
  • 相关阅读:
    Asp.NET调用有道翻译API
    JSON C# Class Generator ---由json字符串生成C#实体类的工具
    让jQuery的contains方法不区分大小写
    javascript parseUrl函数(来自国外的获取网址url参数)
    typescript
    webpack 第二部分
    express node 框架介绍
    webpack 最新版
    es6 字符串 对象 拓展 及 less 的语法
    es6 的数组的方法
  • 原文地址:https://www.cnblogs.com/kuangbin/p/3159306.html
Copyright © 2020-2023  润新知