• POJ 1679 The Unique MST(次小生成树)


    The Unique MST
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 16984   Accepted: 5892

    Description

    Given a connected undirected graph, tell if its minimum spanning tree is unique. 

    Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 
    1. V' = V. 
    2. T is connected and acyclic. 

    Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'. 

    Input

    The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

    Output

    For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

    Sample Input

    2
    3 3
    1 2 1
    2 3 2
    3 1 3
    4 4
    1 2 2
    2 3 2
    3 4 2
    4 1 2
    

    Sample Output

    3
    Not Unique!
    

    Source

     
     
     
    判断最小生成树是不是唯一。
     
    可以求次小生成树,如果相等说明不唯一
     
    //============================================================================
    // Name        : POJ.cpp
    // Author      : 
    // Version     :
    // Copyright   : Your copyright notice
    // Description : Hello World in C++, Ansi-style
    //============================================================================
    
    #include <iostream>
    #include <stdio.h>
    #include <algorithm>
    #include <string.h>
    using namespace std;
    
    /*
     * 次小生成树
     * 求最小生成树时,用数组Max[i][j]来表示MST中i到j最大边权
     * 求完后,直接枚举所有不在MST中的边,替换掉最大边权的边,更新答案
     * 点的编号从0开始
     */
    const int MAXN=110;
    const int INF=0x3f3f3f3f;
    bool vis[MAXN];
    int lowc[MAXN];
    int pre[MAXN];
    int Max[MAXN][MAXN];//Max[i][j]表示在最小生成树中从i到j的路径中的最大边权
    bool used[MAXN][MAXN];
    int Prim(int cost[][MAXN],int n)
    {
        int ans=0;
        memset(vis,false,sizeof(vis));
        memset(Max,0,sizeof(Max));
        memset(used,false,sizeof(used));
        vis[0]=true;
        pre[0]=-1;
        for(int i=1;i<n;i++)
        {
            lowc[i]=cost[0][i];
            pre[i]=0;
        }
        lowc[0]=0;
        for(int i=1;i<n;i++)
        {
            int minc=INF;
            int p=-1;
            for(int j=0;j<n;j++)
                if(!vis[j]&&minc>lowc[j])
                {
                    minc=lowc[j];
                    p=j;
                }
            if(minc==INF)return -1;
            ans+=minc;
            vis[p]=true;
            used[p][pre[p]]=used[pre[p]][p]=true;
            for(int j=0;j<n;j++)
            {
                if(vis[j])Max[j][p]=Max[p][j]=max(Max[j][pre[p]],lowc[p]);
                if(!vis[j]&&lowc[j]>cost[p][j])
                {
                    lowc[j]=cost[p][j];
                    pre[j]=p;
                }
            }
        }
        return ans;
    }
    int ans;
    int smst(int cost[][MAXN],int n)
    {
        int Min=INF;
        for(int i=0;i<n;i++)
            for(int j=i+1;j<n;j++)
                if(cost[i][j]!=INF && !used[i][j])
                {
                    Min=min(Min,ans+cost[i][j]-Max[i][j]);
                }
        if(Min==INF)return -1;//不存在
        return Min;
    }
    int cost[MAXN][MAXN];
    int main()
    {
        int T;
        int n,m;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d%d",&n,&m);
            int u,v,w;
            for(int i=0;i<n;i++)
                for(int j=0;j<n;j++)
                {
                    if(i==j)cost[i][j]=0;
                    else cost[i][j]=INF;
                }
            while(m--)
            {
                scanf("%d%d%d",&u,&v,&w);
                u--;v--;
                cost[u][v]=cost[v][u]=w;
            }
            ans=Prim(cost,n);
            if(ans==-1)
            {
                printf("Not Unique!
    ");
                continue;
            }
            if(ans==smst(cost,n))printf("Not Unique!
    ");
            else printf("%d
    ",ans);
        }
        return 0;
    }
     
     
     
  • 相关阅读:
    前端 “一键换肤“ 的 N 种方案及css中var()和:root用法
    给定一个只包括 '(',')','{','}','[',']' 的字符串 s ,判断字符串是否有效
    Python三方模块
    Lazarus+LAMW强制APP屏幕方向
    定制lazarus compiler config
    CentOS8的网络IP配置详解
    mongoDB导入导出
    离线安装docker并导入导出镜像
    Docker初级实战
    dwm 美化
  • 原文地址:https://www.cnblogs.com/kuangbin/p/3147329.html
Copyright © 2020-2023  润新知