• POJ 2299 UltraQuickSort(求逆序数,归并排序或者离散化+树状数组)


    Ultra-QuickSort
    Time Limit: 7000MS   Memory Limit: 65536K
    Total Submissions: 27665   Accepted: 9915

    Description

    In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
    9 1 0 5 4 ,

    Ultra-QuickSort produces the output
    0 1 4 5 9 .

    Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

    Input

    The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

    Output

    For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

    Sample Input

    5
    9
    1
    0
    5
    4
    3
    1
    2
    3
    0
    

    Sample Output

    6
    0
    

    Source

     
     
    本题就是求逆序数
     
    一种方法是用归并排序求逆序数
     
    /*
    POJ 2299 Ultra-QuickSort
    求逆序数
    用归并排序求逆序数
    */
    #include <stdio.h>
    #include<string.h>
    #include<iostream>
    using namespace std;
    const int MAXN=500010;
    long long ans;//存放逆序数,比较大,必须用long long
    int a[MAXN],b[MAXN],c[MAXN];
    
    //将已经排好序的left~mid,mid+1~right进行归并
    void merge(int *a,int left,int mid,int right)
    {
        int i,j;
        i=0;
        for(j=left;j<=mid;j++)
           b[i++]=a[j];
        int len1=mid-left+1;
        i=0;
        for(j=mid+1;j<=right;j++)
           c[i++]=a[j];
        int len2=right-mid;
        i=0;
        j=0;
        int k=left;
        while(i<len1&&j<len2&&k<=right)
        {
            if(b[i]<=c[j])
            {
                a[k++]=b[i++];
            }
            else
            {
                a[k++]=c[j++];
                ans+=(len1-i);//逆序数就是累加后面比自己小的数的个数
                //此时b[i]>c[j],那么c[j]会给b[i]后面的len1-i个数造成逆序数
            }
        }
        while(i<len1) a[k++]=b[i++];
        while(j<len2) a[k++]=c[j++];
    }
    void merge_sort(int *a,int left,int right)//对a[left~right-1]进行归并排序
    {
        if(left<right)
        {
            int mid=(left+right)/2;
            merge_sort(a,left,mid);
            merge_sort(a,mid+1,right);
            merge(a,left,mid,right);
        }
    }
    int main()
    {
        //freopen("in.txt","r",stdin);
        //freopen("out.txt","w",stdout);
        int n;
        while(scanf("%d",&n),n)
        {
            for(int i=0;i<n;i++)
              scanf("%d",&a[i]);
            ans=0;
            merge_sort(a,0,n-1);
            printf("%I64d\n",ans);
        }
        return 0;
    }

    另外一种求逆序数的方法就是用树状数组。

    本题数据比较大,需要先离散化,再用树状数组。

    代码如下:

    /*
    POJ 2299 Ultra-QuickSort
    求逆序数
    离散化+树状数组
    首先从小到大进行编号,从而实现离散化
    然后利用树状数组来统计每个数前面比自己大的数的个数
    */
    
    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    #include<iostream>
    using namespace std;
    const int MAXN=500010;
    int c[MAXN];
    int b[MAXN];
    int n;
    struct Node
    {
        int index;//序号
        int v;
    }node[MAXN];
    bool cmp(Node a,Node b)
    {
        return a.v<b.v;
    }
    int lowbit(int x)
    {
        return x&(-x);
    }
    void add(int i,int val)
    {
        while(i<=n)
        {
            c[i]+=val;
            i+=lowbit(i);
        }
    }
    int sum(int i)
    {
        int s=0;
        while(i>0)
        {
            s+=c[i];
            i-=lowbit(i);
        }
        return s;
    }
    int main()
    {
       // freopen("in.txt","r",stdin);
        //freopen("out.txt","w",stdout);
        while(scanf("%d",&n),n)
        {
            for(int i=1;i<=n;i++)
            {
                scanf("%d",&node[i].v);
                node[i].index=i;
            }
            memset(b,0,sizeof(b));
            memset(c,0,sizeof(c));
            //离散化
            sort(node+1,node+n+1,cmp);
            //将最小的编号为1
            b[node[1].index]=1;
            for(int i=2;i<=n;i++)
            {
                if(node[i].v!=node[i-1].v) b[node[i].index]=i;
                else b[node[i].index]=b[node[i-1].index];
            }
            long long  ans=0;
            //这里用的很好
            //一开始c数组都是0,然后逐渐在b[i]处加上1;
            for(int i=1;i<=n;i++)
            {
                add(b[i],1);
                ans+=sum(n)-sum(b[i]);
            }
            printf("%I64d\n",ans);
        }
        return 0;
    }
  • 相关阅读:
    sort函数的运用
    数据库设计三大范式
    LeetCode 64. 求1+2+…+n
    LeetCode 876. 链表的中间结点
    单链表的创建和基本操作 C语言
    LeetCode 365. 水壶问题
    LeetCode 1160. 拼写单词
    LeetCode 409. 最长回文串
    LeetCode 836. 矩形重叠
    LeetCode 7. 整数反转
  • 原文地址:https://www.cnblogs.com/kuangbin/p/2630042.html
Copyright © 2020-2023  润新知