• LCP 34. 二叉树染色


    小扣有一个根结点为 root 的二叉树模型,初始所有结点均为白色,可以用蓝色染料给模型结点染色,模型的每个结点有一个 val 价值。小扣出于美观考虑,希望最后二叉树上每个蓝色相连部分的结点个数不能超过 k 个,求所有染成蓝色的结点价值总和最大是多少?

    示例 1:

    输入:root = [5,2,3,4], k = 2

    输出:12

    解释:结点 5、3、4 染成蓝色,获得最大的价值 5+3+4=12

    示例 2:

    输入:root = [4,1,3,9,null,null,2], k = 2

    输出:16

    解释:结点 4、3、9 染成蓝色,获得最大的价值 4+3+9=16

    方法:动态规划
    题意分析
    找到染色节点的最大和

    思路及算法
    由于有下一步的计算结果依赖于前一步,可尝试用动态规划的方式求解。
    一般的动态规划题目思路三步走:

    定义状态转移方程
    给定转移方程初始值
    写代码递推实现转移方程
    考虑自底向上dp,保存子节点的状态并计算当前是否染色的状态。

    1. 定义状态转移方程
    定义一维数组 dp[k+1]:
    dp[i] 表示 每个节点的状态,i 表示染了几个节点,i=0 表示没有染色,i>0 表示染色 。

    定义状态转移方程:
    当前节点为root,dp逻辑为(详见注释):

    root不染色,那么只要返回 dp[0],其值为左、右子树染色或不染色的最大值之和
    root染色,那么就分左子树染色 j 个,右子树染色 i - 1 - j 个时,加上 root.val 的和。
    注意:j 需要从 0 取到 i - 1,也就是包含 l[0] 和 r[0]。因为 l[0] 也包含左子树染了j个节点的情况,因为左子树的下一层子节点可能染了j个节点。

    dp[i] = Math.max(dp[i], root.val + l[j] + r[i - 1 - j]);
    条件分叉代码可参考注释。

    2. 给定转移方程初始值
    初始值为 叶子节点下的空节点,所以 直接返回都为 0 的 new int[k + 1];

    class Solution {
      public int maxValue(TreeNode root, int k) {
        int[] dp = dynamic(root, k);
        int max = Integer.MIN_VALUE;
        for (int i = 0; i <= k; i++) {
          //取root的各种染色情况的最大值
          max = Math.max(max, dp[i]);
        }
        return max;
      }
    
      private int[] dynamic(TreeNode root, int k) {
        int[] dp = new int[k + 1];
        //1.初始化:空节点为底,自底向上
        if (root == null) return dp;
        //2.获取左、右子树染色状态的dp表
        //- 左子树
        int[] l = dynamic(root.left, k);
        //- 右子树
        int[] r = dynamic(root.right, k);
        //3.更新处理root 染色/不染色 的情况下的dp表
        //- 不染root
        int ml = Integer.MIN_VALUE, mr = Integer.MIN_VALUE;
        for (int i = 0; i <= k; i++) {
          //- 分别取子节点的最大值
          ml = Math.max(ml, l[i]);
          mr = Math.max(mr, r[i]);
        }
        dp[0] = ml + mr;
        //- 染root
        for (int i = 1; i <= k; i++) {
          for (int j = 0; j < i; j++) {
            //- 还需要染色 i - 1 个点,左子树 j 个,右子树 i-1-j 个
            dp[i] = Math.max(dp[i], root.val + l[j] + r[i - 1 - j]);
          }
        }
        //4.更新完毕,返回后继续向上动态规划
        return dp;
      }
    }
  • 相关阅读:
    linux---集群架构初探(14)静态、动态、流量术语
    linux---集群架构初探(13)http与www服务基础介绍
    linux---集群架构初探(12)ansible剧本模式(playbook)
    linux---集群架构初探(11) 实践:一键部署nfs
    linux---集群架构初探(10)Ansible常用模块
    试题一 讲解
    aws 试题
    linux 常用命令。
    nohub命令简单介绍。
    Linux 系统conda环境,pip文件的导出和安装。
  • 原文地址:https://www.cnblogs.com/kpwong/p/14687886.html
Copyright © 2020-2023  润新知