• [USACO08JAN]牛大赛Cow Contest


    题目链接:

    Cow Contest

    分析:

    听说是一个Floyd求传递闭包
    被拓扑的标签骗了进去
    首先如果整个图不连通那么显然没办法确定,因为两个连通块之间的信息没有办法传递
    所以先并查集判一下
    然后考虑拓扑排序,一个点能得到确定的排名当且仅当它能被之前所有入过队的点到达

    代码:

    #include<bits/stdc++.h>
    #define N (300 + 10)
    #define M (50000 + 10)
    using namespace std;
    inline int read() {
    	int cnt = 0, f = 1; char c = getchar();
    	while (!isdigit(c)) {if (c == '-') f = -f; c = getchar();}
    	while (isdigit(c)) {cnt = (cnt << 3) + (cnt << 1) + (c ^ 48); c = getchar();}
    	return cnt * f;
    }
    int n, m, first[N], nxt[M], to[M], fa[N], x, y, gone[N][N], total = 0, topo[N], rd[N], tot, cnt;
    queue <int> q;
    void add(int x, int y) {nxt[++tot] = first[x], first[x] = tot, to[tot] = y;}
    int get_fa(int x) {return x == fa[x] ? x : fa[x] = get_fa(fa[x]);}
    void tpsort() {
    	for (register int i = 1; i <= n; ++i) if (!rd[i]) q.push(i), topo[++total] = i;
    //	if (q.size() == 1) ++cnt;
    	while (!q.empty()) {
    		int u = q.front(); q.pop();
    		bool flag = 0;
    		for (register int i = 1; i <= total; ++i) if (!gone[u][topo[i]]) flag = 1;
    		if (!flag && !q.size()) ++cnt;
    		for (register int i = first[u]; i; i = nxt[i]) {
    			int v = to[i];
    			--rd[v];
    			for (register int i = 1; i <= n; ++i) gone[v][i] |= gone[u][i];
    			if (!rd[v]) q.push(v), topo[++total] = v;
    		}
    	}
    }
    int main() {
    //	freopen("1.in", "r", stdin);
    	n = read(), m = read();
    	for (register int i = 1; i <= n; ++i) fa[i] = i, gone[i][i] = 1;
    	for (register int i = 1; i <= m; ++i) {
    		x = read(), y = read();
    		add(x, y), ++rd[y], fa[get_fa(y)] = get_fa(x);
    	}
    	for (register int i = 1; i <= n; ++i) if (fa[i] == i) ++cnt;
    	if (cnt > 1) return printf("0"), 0;
    	cnt = 0;
    	tpsort();
    	printf("%d", cnt);
    	return 0;
    }
    
  • 相关阅读:
    Python select示例
    Python paramiko
    Python SQLAlchemy之多对多
    Python SQLAlchemy
    Python 上下文关系
    Python rabbitmq
    Python mysql
    使用Word 2013向cnblog发布博文
    jquery lazyload延迟加载技术的实现原理分析_jquery
    jquery-懒加载技术(简称lazyload)
  • 原文地址:https://www.cnblogs.com/kma093/p/11791381.html
Copyright © 2020-2023  润新知