• luogu 1969 积木大赛


    题目链接

    题意

    初始序列为全(0),可以对序列进行的操作为将([l,r])整体(+1),问操作多少次后可以得到序列(a).

    思路

    显然,最优的策略即是先找到整个序列的最小值,整体加上这么多,于是序列分成了两块;找到左半边的最小值,左半边整体加上;找到右半边的最小值,右半边整体加上……然而这样的做法是(O(n^2))的,怎么办呢?

    法一:线段树

    用线段树维护区间最小值,区间修改+区间查询。

    复杂度(O(nlogn)).

    Code

    #include <bits/stdc++.h>
    #define lson (rt << 1)
    #define rson (rt << 1 | 1)
    #define inf 0x3f3f3f3f
    #define maxn 100010
    using namespace std;
    typedef long long LL;
    struct node {
        int l, r, p, min, tag;
    }tr[maxn * 4];
    void push_up(int rt) {
        if (tr[lson].min < tr[rson].min) tr[rt].min = tr[lson].min, tr[rt].p = tr[lson].p;
        else tr[rt].min = tr[rson].min, tr[rt].p = tr[rson].p;
    }
    void build(int rt, int l, int r) {
        tr[rt].l = l, tr[rt].r = r, tr[rt].min = inf;
        if (l == r) {
            scanf("%d", &tr[rt].min);
            tr[rt].p = l;
            return;
        }
        int mid = l + r >> 1;
        build(lson, l, mid); build(rson, mid+1, r);
        push_up(rt);
    }
    void push_down(int rt) {
        if (tr[rt].tag) {
            tr[lson].min += tr[rt].tag, tr[rson].min += tr[rt].tag;
            tr[lson].tag += tr[rt].tag, tr[rson].tag += tr[rt].tag;
            tr[rt].tag = 0;
        }
    }
    void modify(int rt, int l, int r, int del) {
        if (tr[rt].l == l && tr[rt].r == r) {
            tr[rt].min += del;
            tr[rt].tag += del;
            return;
        }
        push_down(rt);
        int mid = tr[rt].l + tr[rt].r >> 1;
        if (r <= mid) modify(lson, l, r, del);
        else if (l > mid) modify(rson, l, r, del);
        else modify(lson, l, mid, del), modify(rson, mid+1, r, del);
        push_up(rt);
    }
    int query(int rt, int l, int r, int& p) {
        if (tr[rt].l == l && tr[rt].r == r) { p = tr[rt].p; return tr[rt].min; }
        push_down(rt);
        int mid = tr[rt].l + tr[rt].r >> 1;
        if (r <= mid) return query(lson, l, r, p);
        else if (l > mid) return query(rson, l, r, p);
        else {
            int p1, p2;
            int ql = query(lson, l, mid, p1), qr = query(rson, mid+1, r, p2);
            if (ql < qr) { p = p1; return ql; }
            else { p = p2; return qr; }
        }
    }
    int solve(int l, int r) {
        if (l > r) return 0;
        int p;
        int mn = query(1, l, r, p);
        if (l == r) return mn;
        else {
            if (p-1 >= l) modify(1, l, p-1, -mn);
            if (p+1 <= r) modify(1, p+1, r, -mn);
            return solve(l, p-1) + mn + solve(p+1, r);
        }
    }
    int main() {
        int n;
        scanf("%d", &n);
        build(1, 1, n);
        printf("%d
    ", solve(1, n));
        return 0;
    }
    
    

    法二:换个视角

    考虑第(i)块积木和第(i+1)块积木,如果第(i+1)块的积木低于或等于第(i)块积木的高度,那么在搭第(i)块积木的时候或者在这之前肯定就已经顺便搭好了第(i+1)块积木;而如果第(i+1)块的积木高于第(i)块积木的高度,那么第(i+1)块积木就必须要自己弥补上空缺的部分。

    其实这个想法的具体操作完全等价于之前的思路,只不过是将每次找最小值的过程归到了从前往后的计算中,因此,在后一块积木的高度低于前一块积木的高度时无需再进行计算,因为已经在前面被计算过了。

    Code

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    int main() {
        int n;
        scanf("%d", &n);
        int p = 0, ans = 0;
        for (int i = 0; i < n; ++i) {
            int x;
            scanf("%d", &x);
            if (x > p) ans += x - p;
            p = x;
        }
        printf("%d
    ", ans);
        return 0;
    }
    
    

    法三:分治

    将左半边与右半边合并时,如果(h[mid]geq h[mid+1]),则第(mid+1)块及之后被截断之前的若干块的(h[mid+1])的部分都在搭第(mid)块时完成了;如果(h[mid]lt h[mid+1]),则第(mid+1)块及之后被截断之前的若干块的(h[mid])的部分也都在搭第(mid)块时完成了。

    solve(l,r)=solve(l,mid)+solve(mid+1,r)-min(h[mid],h[mid+1]);

    Code

    #include <bits/stdc++.h>
    #define maxn 100010
    using namespace std;
    typedef long long LL;
    int a[maxn];
    int solve(int l, int r) {
        if (l == r) return a[l];
        int mid = l+r >> 1;
        return solve(l, mid) + solve(mid+1, r) - min(a[mid], a[mid+1]);
    }
    int main() {
        int n;
        scanf("%d", &n);
        for (int i = 1; i <= n; ++i) scanf("%d", &a[i]);
        printf("%d
    ", solve(1, n));
        return 0;
    }
    
    
  • 相关阅读:
    Facebook主页照片和封面照片的尺寸要求
    NopCommerce源码架构详解
    Razor语法大全
    IIS 8 上传图片 上传文件报413错误及仅Https下报413问题,IIS高版本的配置方案及Web.config配置全解
    (一) MongoDB安装与配置
    Net Core 导出PDF
    ASP.NET Core AutoWrapper 自定义响应输出
    浅谈Docker之Docker数据持久化Bind Mount和Volume(转)
    搭建mysql集群
    MySQL错误:Can't connect to MySQL server (10060) 解决方案
  • 原文地址:https://www.cnblogs.com/kkkkahlua/p/7625762.html
Copyright © 2020-2023  润新知