• HDU 1506 Largest Rectangle in a Histogram(DP)


    Largest Rectangle in a Histogram

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 11137    Accepted Submission(s): 3047


    Problem Description
    A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles:

    Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.
     

    Input
    The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1 <= n <= 100000. Then follow n integers h1, ..., hn, where 0 <= hi <= 1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.
     

    Output
    For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.
     

    Sample Input
    7 2 1 4 5 1 3 3 4 1000 1000 1000 1000 0
     

    Sample Output
    8 4000
     

    题意  求条形图中最大矩形的面积  输入给你条的个数  每一个条的高度hi   (下面等于也视为高)

    仅仅要知道第i个条左边连续多少个(a)比他高   右边连续多少个(b)比他高  那么以这个条为最大高度的面积就是hi*(a+b+1);

    可是直接枚举每个的话肯定会超时的   超时代码

    #include<cstdio>
    using namespace std;
    const int N = 100005;
    typedef long long ll;
    ll h[N]; int n,wide[N];
    int main()
    {
        while (scanf ("%d", &n), n)
        {
            for (int i = 1; i <= n; ++i)
                scanf ("%I64d", &h[i]);
            for (int i = 1; i <= n; ++i)
            {
                wide[i] = 1;
                int k = i;
                while (k > 1 && h[--k] >= h[i]) ++wide[i];
                k = i;
                while (k < n && h[++k] >= h[i]) ++wide[i];
            }
            ll ans = 0;
            for (int i = 1; i <= n; ++i)
                if (h[i]*wide[i] > ans) ans = h[i] * wide[i];
            printf ("%I64d
    ", ans);
        }
        return 0;
    }

    能够发现   当第i-1个比第i个高的时候   比第i-1个高的全部也一定比第i个高  

    于是能够用到动态规划的思想

    令left[i]表示包含i在内比i高的连续序列中最左边一个的编号   right[i]为最右边一个的编号

    那么有   当h[left[i]-1]>=h[i]]时   left[i]=left[left[i]-1]  从前往后能够递推出left[i]   

    同理      当h[right[i]+1]>=h[i]]时   right[i]=right[right[i]+1]   从后往前可递推出righ[i]

    最后答案就等于 max((right[i]-left[i]+1)*h[i])

    #include<cstdio>
    using namespace std;
    const int N = 100005;
    typedef long long ll;
    ll h[N];
    int n, left[N], right[N];
    int main()
    {
        while (scanf ("%d", &n), n)
        {
            for (int i = 1; i <= n; ++i)
                scanf ("%I64d", &h[i]), left[i] = right[i] = i;
            h[0] = h[n + 1] = -1;
            for (int i = 1; i <= n; ++i)
                while (h[left[i] - 1] >= h[i])
                    left[i] = left[left[i] - 1];
            for (int i = n; i >= 1; --i)
                while (h[right[i] + 1] >= h[i])
                    right[i] = right[right[i] + 1];
            ll ans = 0;
            for (int i = 1; i <= n; ++i)
                if (h[i] * (right[i] - left[i] + 1) > ans) ans = h[i] * ll (right[i] - left[i] + 1);
            printf ("%I64d
    ", ans);
        }
        return 0;
    }



  • 相关阅读:
    【洛谷P2860】冗余路径
    【CF1042D】Petya and Array 离散化+树状数组
    【洛谷P2127】序列排序
    【洛谷P4462】异或序列
    【SPOJ10707】COT2
    【CF1119D】Frets On Fire
    【CF1119E】Pavel and Triangles
    【洛谷P1903】数颜色
    hdu 3488(KM算法||最小费用最大流)
    hdu 1853(拆点判环+费用流)
  • 原文地址:https://www.cnblogs.com/jzssuanfa/p/7017556.html
Copyright © 2020-2023  润新知