• 布隆过滤器


    试想一下这样的场景,当黑客故意访问不存在的数据,导致程序不断访问DB数据库的数据,数据库会不会挂掉?答案是会的。所以为了避免这种情况发生,当黑客访问不存在的缓存时能够迅速返回避免缓存及DB挂掉,引出了今天讲的布隆过滤器。

    布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。

    优点:相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。布隆过滤器存储空间和插入/查询时间都是常数。另外,散列函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势

    缺点:布隆过滤器的缺点和优点一样明显。误算率是其中之一。随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣

     

    Spring Boot 实现谷歌布隆过滤器——以会员抽奖为例

    步骤一:引入依赖

    <dependency>
        <groupId>com.google.guava</groupId>
        <artifactId>guava</artifactId>
        <version>21.0</version>
    </dependency>

    步骤二:将需要判断数据是否存在的key值

    @Service
    public class BloomFilterService {
    
        @Resource
        private SysUserMapper sysUserMapper;
    
        private BloomFilter<Integer> bf;
    
        /***
         * PostConstruct 程序启动时候加载此方法
         */
        @PostConstruct
        public void initBloomFilter() {
            SysUserExample sysUserExample = new SysUserExample();
            List<SysUser> sysUserList = sysUserMapper.selectByExample(sysUserExample);
            if(CollectionUtils.isEmpty(sysUserList)){
                return;
            }
            //创建布隆过滤器(默认3%误差)
            bf = BloomFilter.create(Funnels.integerFunnel(),sysUserList.size());
            for (SysUser sysUser:sysUserList) {
                bf.put(sysUser.getId());
            }
        }
    
        /***
         * 判断id可能存在于布隆过滤器里面
         * @param id
         * @return
         */
        public boolean userIdExists(int id){
            return bf.mightContain(id);
        }
    
    }

    步骤三:进行测试

    @RestController
    public class BloomFilterController {
        @Resource
        private BloomFilterService bloomFilterService;
    
        @RequestMapping("/bloom/idExists")
        public boolean ifExists(int id){
            return bloomFilterService.userIdExists(id);
        }
    }

    基于内存的 google 布隆过滤器的缺陷与思考

    • 重启即失效
    • 本地内存无法用在分布式场景
    • 不支持大数据量存储

    为了解决这些问题,我们可以使用 Redis 布隆过滤器,它的好处有:

    • 可扩展性Bloom过滤器
    • 一旦Bloom过滤器达到容量,就会在其上创建一个新的过滤器
    • 不存在重启即失效或者定时任务维护的成本
    • 基于goole实现的布隆过滤器需要启动之后初始化布隆过滤器

    它的缺点:需要网络 IO,性能比基于内存的过滤器低

    优先基于数据量进行考虑选择哪个布隆过滤器

    基于 Lua 脚本实现 Spring Boot 和布隆过滤器的整合

    步骤一:编写两个 Lua 脚本

    bloomFilterAdd.lua

    local bloomName = KEYS[1]
    local value = KEYS[2]
    
    -- bloomFilter
    local result_1 = redis.call('BF.ADD', bloomName, value)
    return result_1

    bloomFilterExist.lua

    local bloomName = KEYS[1]
    local value = KEYS[2]
    
    -- bloomFilter
    local result_1 = redis.call('BF.EXISTS', bloomName, value)
    return result_1

    步骤二:新建两个方法

    1)添加数据到指定名称的布隆过滤器(bloomFilterAdd)

    2)从指定名称的布隆过滤器获取 key 是否存在的脚本(bloomFilterExists)

    @Service
    public class RedisService {
        @Autowired
        private RedisTemplate redisTemplate;
    
        private static final String bloomFilterName = "isVipBloom";
    
        public Boolean bloomFilterAdd(int value){
            DefaultRedisScript<Boolean> bloomAdd = new DefaultRedisScript<>();
            bloomAdd.setScriptSource(new ResourceScriptSource(new ClassPathResource("bloomFilterAdd.lua")));
            bloomAdd.setResultType(Boolean.class);
            List<Object> keyList= new ArrayList<>();
            keyList.add(bloomFilterName);
            keyList.add(value+"");
            Boolean result = (Boolean) redisTemplate.execute(bloomAdd,keyList);
            return result;
        }
    
        public Boolean bloomFilterExists(int value){
            DefaultRedisScript<Boolean> bloomExists= new DefaultRedisScript<>();
            bloomExists.setScriptSource(new ResourceScriptSource(new ClassPathResource("bloomFilterExist.lua")));
            bloomExists.setResultType(Boolean.class);
            List<Object> keyList= new ArrayList<>();
            keyList.add(bloomFilterName);
            keyList.add(value+"");
            Boolean result = (Boolean) redisTemplate.execute(bloomExists,keyList);
            return result;
        }
    }

    步骤三:进行测试

    @RestController
    public class BloomFilterController {
        @Resource
        private RedisService redisService;
    
        @RequestMapping("/bloom/redisIdExists")
        public boolean redisidExists(int id){
            return redisService.bloomFilterExists(id);
        }
    
        @RequestMapping("/bloom/redisIdAdd")
        public boolean redisidAdd(int id){
            return redisService.bloomFilterAdd(id);
        }
    }

    实现一个秒杀业务

    1)利用 Redis 缓存 incr 拦截流量

    首先通过数据控制模块,提前将秒杀商品缓存到读写分离 Redis,并设置秒杀开始标记如下:

    • skuId_start: 0    开始标记,0表示秒杀还没开始
    • skuId_count: 10000   表示总数
    • skuId_access: 12000  表示接受抢购数

    秒杀开始前,服务集群读取 skuId_start 为 0,直接返回未开始。之所以设置这个值而不是根据时间判断是否开始,是因为服务时间可能不一致(相差几百毫秒)这样可能导致流量倾斜(其他服务没开始,会将大量的流量堆积到开始的服务上)

    数据控制模块将 skuId_start 改为1,标志秒杀开始。

    当接受下单数达到 skuId_count*1.2 后,继续拦截所有请求。

    2)利用 Redis 缓存加速库存扣量

    • skuId_booked: 0 表示没有抢购

    3)将用户订单数据写入mq

    4)监听mq入库

    代码实现

    @Service
    public class SeckillService {
    
        private static final String secStartPrefix = "skuId_start_";
        private static final String secAccess = "skuId_access_";
        private static final String secCount = "skuId_count_";
        private static final String filterName = "skuId_bloomfilter_";
        private static final String bookedName = "skuId_booked_";
    
    
        @Resource
        private RedisService redisService;
    
        public String seckill(int uid, int skuId) {
            //流量拦截层
            //1、判断秒杀是否开始   0_1554045087    开始标识_开始时间
            String isStart = (String) redisService.get(secStartPrefix + skuId);
            if (StringUtils.isBlank(isStart)) {
                return "还未开始";
            }
            if (isStart.contains("_")) {
                Integer isStartInt = Integer.parseInt(isStart.split("_")[0]);
                Integer startTime = Integer.parseInt(isStart.split("_")[1]);
                if (isStartInt == 0) {
                    if (startTime > getNow()) {
                        return "还未开始";
                    } else {
                        //代表秒杀已经开始
                        redisService.set(secStartPrefix + skuId, 1 + "");
                    }
                } else {
                    return "系统异常";
                }
            } else {
                if (Integer.parseInt(isStart) != 1) {
                    return "系统异常";
                }
            }
            //2、流量拦截
            String skuIdAccessName = secAccess + skuId;
            Integer accessNumInt = 0;
            String accessNum = (String) redisService.get(skuIdAccessName);
            if (StringUtils.isNotBlank(accessNum)) {
                accessNumInt = Integer.parseInt(accessNum);
            }
            String skuIdCountName = secCount + skuId;
            Integer countNumInt = Integer.parseInt((String) redisService.get(skuIdCountName));
            if (countNumInt * 1.2 < accessNumInt) {
                return "抢购已经完成,欢迎下次参与";
            } else {
                redisService.incr(skuIdAccessName);
            }
            //信息校验层
            if (redisService.bloomFilterExists(filterName, uid)) {
                return "您已经抢购过该商品,请勿重复下发!";
            } else {
                redisService.bloomFilterAdd(filterName, uid);
            }
            Boolean isSuccess = redisService.getAndIncrLua(bookedName + skuId);
            if (isSuccess) {
                return "恭喜您抢购成功!!!";
            } else {
                return "抢购结束,欢迎下次参与";
            }
        }
    
        private long getNow() {
            return System.currentTimeMillis() / 1000;
        }
    }

    RedisService

    @Service
    public class RedisService {
    
        @Autowired
        private RedisTemplate redisTemplate;
    
        private static double size = Math.pow(2, 32);
    
    
        /**
         * 写入缓存
         *
         * @param key
         * @param offset 位 8Bit=1Byte
         * @return
         */
        public boolean setBit(String key, long offset, boolean isShow) {
            boolean result = false;
            try {
                ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
                operations.setBit(key, offset, isShow);
                result = true;
            } catch (Exception e) {
                e.printStackTrace();
            }
            return result;
        }
    
        /**
         * 写入缓存
         *
         * @param key
         * @param offset
         * @return
         */
        public boolean getBit(String key, long offset) {
            boolean result = false;
            try {
                ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
                result = operations.getBit(key, offset);
            } catch (Exception e) {
                e.printStackTrace();
            }
            return result;
        }
    
    
        /**
         * 写入缓存
         *
         * @param key
         * @param value
         * @return
         */
        public boolean set(final String key, Object value) {
            boolean result = false;
            try {
                ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
                redisTemplate.opsForList();
                operations.set(key, value);
                result = true;
            } catch (Exception e) {
                e.printStackTrace();
            }
            return result;
        }
    
    
        /**
         * 写入缓存
         *
         * @param key
         * @return
         */
        public Object get(final String key) {
            boolean result = false;
            try {
                ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
                return operations.get(key);
            } catch (Exception e) {
                e.printStackTrace();
                return null;
            }
        }
    
    
        /**
         * 写入缓存
         *
         * @param key
         * @param value
         * @return
         */
        public boolean decr(final String key, int value) {
            boolean result = false;
            try {
                ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
                operations.increment(key, -value);
                result = true;
            } catch (Exception e) {
                e.printStackTrace();
            }
            return result;
        }
    
    
        /**
         * 写入缓存
         *
         * @param key
         * @return
         */
        public boolean incr(final String key) {
            boolean result = false;
            try {
                ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
                operations.increment(key, 1);
                result = true;
            } catch (Exception e) {
                e.printStackTrace();
            }
            return result;
        }
    
        /**
         * 写入缓存设置时效时间
         *
         * @param key
         * @param value
         * @return
         */
        public boolean set(final String key, Object value, Long expireTime) {
            boolean result = false;
            try {
                ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
                operations.set(key, value);
                redisTemplate.expire(key, expireTime, TimeUnit.SECONDS);
                result = true;
            } catch (Exception e) {
                e.printStackTrace();
            }
            return result;
        }
    
        /**
         * 批量删除对应的value
         *
         * @param keys
         */
        public void remove(final String... keys) {
            for (String key : keys) {
                remove(key);
            }
        }
    
    
        /**
         * 删除对应的value
         *
         * @param key
         */
        public void remove(final String key) {
            if (exists(key)) {
                redisTemplate.delete(key);
            }
        }
    
        /**
         * 判断缓存中是否有对应的value
         *
         * @param key
         * @return
         */
        public boolean exists(final String key) {
            return redisTemplate.hasKey(key);
        }
    
        /**
         * 读取缓存
         *
         * @param key
         * @return
         */
        public Object genValue(final String key) {
            Object result = null;
            ValueOperations<String, String> operations = redisTemplate.opsForValue();
            result = operations.get(key);
            return result;
        }
    
        /**
         * 哈希 添加
         *
         * @param key
         * @param hashKey
         * @param value
         */
        public void hmSet(String key, Object hashKey, Object value) {
            HashOperations<String, Object, Object> hash = redisTemplate.opsForHash();
            hash.put(key, hashKey, value);
        }
    
        /**
         * 哈希获取数据
         *
         * @param key
         * @param hashKey
         * @return
         */
        public Object hmGet(String key, Object hashKey) {
            HashOperations<String, Object, Object> hash = redisTemplate.opsForHash();
            return hash.get(key, hashKey);
        }
    
        /**
         * 列表添加
         *
         * @param k
         * @param v
         */
        public void lPush(String k, Object v) {
            ListOperations<String, Object> list = redisTemplate.opsForList();
            list.rightPush(k, v);
        }
    
        /**
         * 列表获取
         *
         * @param k
         * @param l
         * @param l1
         * @return
         */
        public List<Object> lRange(String k, long l, long l1) {
            ListOperations<String, Object> list = redisTemplate.opsForList();
            return list.range(k, l, l1);
        }
    
        /**
         * 集合添加
         *
         * @param key
         * @param value
         */
        public void add(String key, Object value) {
            SetOperations<String, Object> set = redisTemplate.opsForSet();
            set.add(key, value);
        }
    
        /**
         * 集合获取
         *
         * @param key
         * @return
         */
        public Set<Object> setMembers(String key) {
            SetOperations<String, Object> set = redisTemplate.opsForSet();
            return set.members(key);
        }
    
        /**
         * 有序集合添加
         *
         * @param key
         * @param value
         * @param scoure
         */
        public void zAdd(String key, Object value, double scoure) {
            ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
            zset.add(key, value, scoure);
        }
    
        /**
         * 有序集合获取
         *
         * @param key
         * @param scoure
         * @param scoure1
         * @return
         */
        public Set<Object> rangeByScore(String key, double scoure, double scoure1) {
            ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
            redisTemplate.opsForValue();
            return zset.rangeByScore(key, scoure, scoure1);
        }
    
    
        //第一次加载的时候将数据加载到redis中
        public void saveDataToRedis(String name) {
            double index = Math.abs(name.hashCode() % size);
            long indexLong = new Double(index).longValue();
            boolean availableUsers = setBit("availableUsers", indexLong, true);
        }
    
        //第一次加载的时候将数据加载到redis中
        public boolean getDataToRedis(String name) {
    
            double index = Math.abs(name.hashCode() % size);
            long indexLong = new Double(index).longValue();
            return getBit("availableUsers", indexLong);
        }
    
        /**
         * 有序集合获取排名
         *
         * @param key   集合名称
         * @param value 值
         */
        public Long zRank(String key, Object value) {
            ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
            return zset.rank(key, value);
        }
    
    
        /**
         * 有序集合获取排名
         *
         * @param key
         */
        public Set<ZSetOperations.TypedTuple<Object>> zRankWithScore(String key, long start, long end) {
            ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
            Set<ZSetOperations.TypedTuple<Object>> ret = zset.rangeWithScores(key, start, end);
            return ret;
        }
    
        /**
         * 有序集合添加
         *
         * @param key
         * @param value
         */
        public Double zSetScore(String key, Object value) {
            ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
            return zset.score(key, value);
        }
    
    
        /**
         * 有序集合添加分数
         *
         * @param key
         * @param value
         * @param scoure
         */
        public void incrementScore(String key, Object value, double scoure) {
            ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
            zset.incrementScore(key, value, scoure);
        }
    
    
        /**
         * 有序集合获取排名
         *
         * @param key
         */
        public Set<ZSetOperations.TypedTuple<Object>> reverseZRankWithScore(String key, long start, long end) {
            ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
            Set<ZSetOperations.TypedTuple<Object>> ret = zset.reverseRangeByScoreWithScores(key, start, end);
            return ret;
        }
    
        /**
         * 有序集合获取排名
         *
         * @param key
         */
        public Set<ZSetOperations.TypedTuple<Object>> reverseZRankWithRank(String key, long start, long end) {
            ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
            Set<ZSetOperations.TypedTuple<Object>> ret = zset.reverseRangeWithScores(key, start, end);
            return ret;
        }
    
    
        public Boolean bloomFilterAdd(String filterName, int value) {
            DefaultRedisScript<Boolean> bloomAdd = new DefaultRedisScript<>();
            bloomAdd.setScriptSource(new ResourceScriptSource(new ClassPathResource("bloomFilterAdd.lua")));
            bloomAdd.setResultType(Boolean.class);
            List<Object> keyList = new ArrayList<>();
            keyList.add(filterName);
            keyList.add(value + "");
            Boolean result = (Boolean) redisTemplate.execute(bloomAdd, keyList);
            return result;
        }
    
    
        public Boolean bloomFilterExists(String filterName, int value) {
            DefaultRedisScript<Boolean> bloomExists = new DefaultRedisScript<>();
            bloomExists.setScriptSource(new ResourceScriptSource(new ClassPathResource("bloomFilterExist.lua")));
            bloomExists.setResultType(Boolean.class);
            List<Object> keyList = new ArrayList<>();
            keyList.add(filterName);
            keyList.add(value + "");
            Boolean result = (Boolean) redisTemplate.execute(bloomExists, keyList);
            return result;
        }
    
        public Boolean getAndIncrLua(String key) {
            DefaultRedisScript<Boolean> bloomExists = new DefaultRedisScript<>();
            bloomExists.setScriptSource(new ResourceScriptSource(new ClassPathResource("secKillIncr.lua")));
            bloomExists.setResultType(Boolean.class);
            List<Object> keyList = new ArrayList<>();
            keyList.add(key);
            Boolean result = (Boolean) redisTemplate.execute(bloomExists, keyList);
            return result;
        }
    }
    RedisService 类似工具类

    secKillIncr.lua

    local lockKey = KEYS[1]
    
    -- get info
    local result_1 = redis.call('GET', lockKey)
    if tonumber(result_1) <10000
    then
    local result_2= redis.call('INCR', lockKey)
    return result_1
    else
    return result_1
    end

    测试:

    @RestController
    public class SeckillController {
    
        @Resource
        private SeckillService seckillService;
    
        @RequestMapping("/redis/seckill")
        public String secKill(int uid,int skuId){
             return seckillService.seckill(uid,skuId);
        }
    }
  • 相关阅读:
    Jquery的事件与动画-----下雨的天气好凉爽
    JQuery选择器--------没有它就没有页面效果
    JavaScript对象--------------你又知道那些
    实体类----app-config
    知错就改,善莫大焉!!!
    二分查找模板
    《软件工程》学习资料积累
    《计算机算法设计与分析》的学习资源和好的课程积累
    软件的概念
    递归方程的求解和算法时间复杂度的分析
  • 原文地址:https://www.cnblogs.com/jwen1994/p/12264717.html
Copyright © 2020-2023  润新知