• 机器学习数目推荐


    转:http://isilic.iteye.com/blog/1851048

    决策树的重要性和入门可以参考前面两篇文章:

    在清华水木上有个Machine Learning的书单: http://www.newsmth.net/nForum/#!article/AI/34859

     其中作为入门的几本书也不简单,都是经典的作品PRML或者是最新的著作(ML-APP),这些书在网上都能找到,不过找到不过不看放在硬盘里的话,其实这些书对你的用处并不大。

     这些书都能在网上找到,我就不贴下载了,大家可以自行查找。

    入门: 

    Pattern Recognition And Machine Learning                

    Author:hristopher M. Bishop 

    Machine Learning : A Probabilistic Perspective 

    Kevin P. Murphy 
      

    The Elements of Statistical Learning : Data Mining, Inference, and Prediction 

    Trevor Hastie, Robert Tibshirani, Jerome Friedman  
      

    Information Theory, Inference and Learning Algorithms 

    David J. C. MacKay 
      

    All of Statistics : A Concise Course in Statistical Inference 

    Larry Wasserman  
      

    优化: 

    Convex Optimization 

    Stephen Boyd, Lieven Vandenberghe 
      

    Numerical Optimization  

    Jorge Nocedal, Stephen Wright 
      

    Optimization for Machine Learning 

    Suvrit Sra, Sebastian Nowozin, Stephen J. Wright 
      

    核方法: 

    Kernel Methods for Pattern Analysis   

    John Shawe-Taylor, Nello Cristianini 
      

    Learning with Kernels : Support Vector Machines, Regularization, Optimization, and Beyond 

    Bernhard Schlkopf, Alexander J. Smola 
      

    半监督: 

    Semi-Supervised Learning 

    Olivier Chapelle 
      

    高斯过程: 

    Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)   

    Carl Edward Rasmussen, Christopher K. I. Williams 
      

    概率图模型:  

    Graphical Models, Exponential Families, and Variational Inference   

    Martin J Wainwright, Michael I Jordan 
      

    Boosting: 

    Boosting : Foundations and Algorithms  

    Schapire, Robert E.; Freund, Yoav 
      

    贝叶斯:   

    Statistical Decision Theory and Bayesian Analysis  

    James O. Berger  
      

    The Bayesian Choice : From Decision-Theoretic Foundations to Computational Implementation  

    Christian P. Robert  
      

    Bayesian Nonparametrics   

    Nils Lid Hjort, Chris Holmes, Peter Müller, Stephen G. Walker 
      

    Principles of Uncertainty  

    Joseph B. Kadane  
      

    Decision Theory : Principles and Approaches 

    Giovanni Parmigiani, Lurdes Inoue 

      

    蒙特卡洛: 

    Monte Carlo Strategies in Scientific Computing 

    Jun S. Liu 
      

    Monte Carlo Statistical Methods 

    Christian P.Robert, George Casella  
      

    信息几何: 

    Methods of Information Geometry  

    Shun-Ichi Amari, Hiroshi Nagaoka 
      

    Algebraic Geometry and Statistical Learning Theory 

    Watanabe, Sumio  
      

    Differential Geometry and Statistics 

    M.K. Murray, J.W. Rice  
      

    渐进收敛: 

    Asymptotic Statistics 

    A. W. van der Vaart  
      

    Empirical Processes in M-estimation 

    Geer, Sara A. van de  
      

    不推荐:   

    Statistical Learning Theory 

    Vladimir N. Vapnik  
      

    Bayesian Data Analysis, Second Edition 

    Andrew Gelman, John B. Carlin, Hal S. Stern, Donald B. Rubin 
      

    Probabilistic Graphical Models : Principles and Techniques 

    Daphne Koller, Nir Friedman  

    另外在微博上也有北美比较常用的机器学习/自然语言处理/语音处理经典书籍的推荐,其中的推荐面比较广,可以看下,和水木上的推荐有重叠。

  • 相关阅读:
    PHP exif扩展方法开启详解(亲测)
    t470安装win7
    (转)如何在Excel2013中制作条形码
    office文件密码破解方法及软件
    解决 this virtual machine’s policies are too old to be run by this version of vmware workstation”
    xp系统下网络打印机怎么设置
    (转载)Excel文档保存的时候,提示“文档未保存”
    java环境变量配置
    转载 __builtin_expect — 分支预测优化
    分布式系统知识点十五:到底servermesh是咋样的,解决啥问题(转载)
  • 原文地址:https://www.cnblogs.com/jungel24/p/5593054.html
Copyright © 2020-2023  润新知