Parencodings
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 22757 | Accepted: 13337 |
Description
Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways:
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
S (((()()()))) P-sequence 4 5 6666 W-sequence 1 1 1456
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
Input
The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line
is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.
Output
The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.
Sample Input
2 6 4 5 6 6 6 6 9 4 6 6 6 6 8 9 9 9
Sample Output
1 1 1 4 5 6 1 1 2 4 5 1 1 3 9#include <iostream> #include <cstring> #include <cstdio> #include <cmath> #include <string> #include <stack> #include <algorithm> using namespace std; const int Max=1100000; int Arr[110]; bool vis[1100]; int main() { int T; int n; while(~scanf("%d",&T)) { while(T--) { scanf("%d",&n); int Max=0; int sum; for(int i=0;i<n;i++) { scanf("%d",&Arr[i]); if(Arr[i]>Max) { Max=Arr[i]; } } Max+=n; sum=Max; memset(vis,false,sizeof(vis)); vis[Max]=true; for(int i=n-2;i>=0;i--) { Max-=(Arr[i+1]-Arr[i]+1); vis[Max]=true; } int top=0; for(int i=1;i<=sum;i++) { if(vis[i]) { int ans=0; int ant=0; for(int j=i;j>=1;j--) { if(vis[j]) { ans++; } else { ans--; ant++; } if(!ans) { break; } } Arr[top++]=ant; } } for(int i=0;i<n;i++) { if(i) cout<<" "; cout<<Arr[i]; } cout<<endl; } } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。