1.gcd:
int gcd(int a,int b){ return b==0?a:gcd(b,a%b); }
2.中国剩余定理:
题目:学生A依次给n个整数a[],学生B相应给n个正整数m[]且两两互素,老师提出问题:有一正整数ans,对于每一对数,都有:(ans-a[i])mod m[i]=0.求此数最小为多少。
输入样例:
1 10 2 3 1 2 3 2 3 5 8 1 2 3 4 5 6 7 8 97 89 67 61 59 53 47 88 12 1 2 3 4 5 6 7 8 9 10 11 12 2 3 5 7 11 13 17 19 23 29 31 37 2 -2 0 999999999 1000000000 3 -10000 -20000 -30000 9999 10000 10001 0
实现代码:
1 #include <fstream> 2 #include <iostream> 3 #include <algorithm> 4 #include <cstdio> 5 #include <cstring> 6 #include <cmath> 7 #include <cstdlib> 8 9 using namespace std; 10 11 #define EPS 1e-6 12 #define ll long long 13 #define INF 0x7fffffff 14 15 int n; 16 ll a[35],m[35]; 17 18 ll ExtendGcd(ll a,ll b,ll &x,ll &y);//扩展欧几里得 19 ll Crt(ll a[],ll m[],int n);//中国剩余定理 20 21 int main() 22 { 23 //freopen("D:\input.in","r",stdin); 24 //freopen("D:\output.out","w",stdout); 25 while(scanf("%d",&n),n){ 26 for(int i=0;i<n;i++) scanf("%lld",&a[i]); 27 for(int i=0;i<n;i++) scanf("%lld",&m[i]); 28 printf("%lld ",Crt(a,m,n)); 29 } 30 return 0; 31 } 32 ll ExtendGcd(ll a,ll b,ll &x,ll &y){ 33 if(!b){ 34 x=1,y=0; 35 return a; 36 }else{ 37 ll r=ExtendGcd(b,a%b,y,x); 38 y-=x*(a/b); 39 return r; 40 } 41 } 42 ll Crt(ll a[],ll m[],int n){ 43 ll mm=1; 44 for(int i=0;i<n;i++) mm*=m[i]; 45 ll ret=0; 46 for(int i=0;i<n;i++){ 47 ll x,y; 48 ll tm=mm/m[i]; 49 ExtendGcd(tm,m[i],x,y); 50 ret=(ret+tm*x*a[i])%mm; 51 } 52 return (ret+mm)%mm; 53 }
这里简单说下扩展欧几里得的推导:
基本算法:对于不完全为 0 的整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。
证明:设 a>b。
1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;
2,ab!=0 时
设 ax1+by1=gcd(a,b);
bx2+(a mod b)y2=gcd(b,a mod b);
根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);
则:ax1+by1=bx2+(a mod b)y2;
即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;
根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;
这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.
上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。
顺便提下中国剩余定理: