• 爬虫代理池,百万数据轻松抓取。


    1.今天我们来讲下一个非常有用的东西,代理ip池,结果就是一个任务每隔一定时间去到目标ip代理提供网站去爬取可用数据存到mysql数据库,并且检测数据库已有数据是否可用,不可用就删除。
    2. 编写 提取代理ip到数据库 的爬虫
    2.1准备mysql表

    CREATE TABLE `t_ips` (
    `id` int(10) NOT NULL AUTO_INCREMENT COMMENT '主键',
    `ip` varchar(15) COLLATE utf8_unicode_ci DEFAULT NULL COMMENT 'ip',
    `port` int(10) NOT NULL COMMENT 'port',
    `type` int(10) NOT NULL DEFAULT '0' COMMENT '0:http 1:https',
    PRIMARY KEY (`id`)
    ) ENGINE=InnoDB AUTO_INCREMENT=421 DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci COMMENT='ip表';

    2.2创建爬虫工程,编写items.py(对应数据库的字段)

    import scrapy
    class IpsItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    ip = scrapy.Field()
    port = scrapy.Field()
    httpType = scrapy.Field()

    2.3编写settings.py

    # -*- coding: utf-8 -*-
    ####################自已的配置################
    MAX_PAGE = 2 ##抓取的代理ip网址 的 页数
    #0 : http 1:https
    TYPE = 0 ### 代理ip类型
    URL = 'http://www.bugng.com/gnpt?page=' ### 代理ip网址
    TIMER_STOP_TIME = 20 ### 定时器暂停执行时间
    #####################################
    BOT_NAME = 'ips'
    SPIDER_MODULES = ['ips.spiders']
    NEWSPIDER_MODULE = 'ips.spiders'
    USER_AGENT = 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36'
    ITEM_PIPELINES = {
    'ips.pipelines.IpsPipeline': 300,
    }
    # 禁止重试
    RETRY_ENABLED = False
    # Crawl responsibly by identifying yourself (and your website) on the user-agent
    #USER_AGENT = 'csdn (+http://www.yourdomain.com)'
    # Obey robots.txt rules
    ROBOTSTXT_OBEY = False
    # 减小下载超时:
    DOWNLOAD_TIMEOUT = 2
    # 禁止cookies:
    COOKIES_ENABLED = False
    # 延迟下载 防止被ban
    DOWNLOAD_DELAY=2

    2.4编写spider

    这里用到了bs4,需要自行安装
    # -*- coding: utf-8 -*-
    import scrapy
    import logging
    from bs4 import BeautifulSoup
    from ips.items import IpsItem
    from ips.settings import *
    class XicispiderSpider(scrapy.Spider):
    name = 'xiciSpider'
    allowed_domains = ['xicidaili.com']
    start_urls = ['http://xicidaili.com/']
    ### 开始 放入url
    def start_requests(self):
    req = []
    for i in range(1,MAX_PAGE):
    ### 代理ip网址的第几页的 url
    req.append(scrapy.Request(URL + str(i-1)))
    return req
    ## 每一页url的 解析回调函数,利用bs4解析
    def parse(self, response):
    print('@@@@@@@@@ 开始解析 '+response.url)
    try:
    soup = BeautifulSoup(str(response.body, encoding = "utf-8"),'html.parser')
    trs = soup.find('table',{'class':'table'}).find_all('tr')
    for tr in trs[1:]:
    tds = tr.find_all('td')
    cur = 0
    item = IpsItem()
    item['httpType'] = TYPE
    for td in tds:
    if cur == 0:
    item['ip'] = td.text
    if cur == 1:
    item['port'] = td.text
    cur = cur +1
    yield item #### 给pipline处理
    except Exception as e:
    logging.log(logging.WARN, '@@@@@@@@@ start parser ' + str(e))

    2.5编写pipline

    这里需要安装 : pip install mysqlclient

    这里插入数据库之前做两个校验:

    1.数据是否存在

    2.数据是否可用

    # -*- coding: utf-8 -*-
    import MySQLdb
    import MySQLdb.cursors
    from twisted.enterprise import adbapi
    import logging
    import requests
    class IpsPipeline(object):
    def __init__(self):
    dbargs = dict(
    host='你的数据库ip',
    db='数据库名称',
    user='root',
    passwd='数据库密码',
    charset='utf8',
    cursorclass=MySQLdb.cursors.DictCursor,
    use_unicode=True,
    )
    self.dbpool = adbapi.ConnectionPool('MySQLdb', **dbargs)
    ##处理每个yeild的item
    def process_item(self, item, spider):
    res = self.dbpool.runInteraction(self.insert_into_table, item)
    return item
    def insert_into_table(self, conn, item):
    ip = item['ip']
    port = item['port']
    # 先查询存不存在
    if self.exsist(item,conn):
    return
    # 查询 此代理ip是否可用,可用就加入数据库
    if self.proxyIpCheck(item['ip'],item['port']) is False:
    print("此代理ip不可用,proxy:",item['ip'],':',str(item['port']))
    return
    sql = 'insert into t_ips (ip,port,type) VALUES ('
    sql = sql + '"' + item['ip'] + '",'
    sql = sql + str(item['port']) + ','
    sql = sql + str(item['httpType']) + ','
    sql = sql[0:-1]
    sql = sql + ')'
    try:
    conn.execute(sql)
    print(sql)
    except Exception as e:
    logging.log(logging.WARNING, "sqlsqlsqlsqlsqlsqlsql error>> " + sql)
    def exsist(self,item,conn):
    sql = 'select * from t_ips where ip="' + item['ip'] + '" and port=' + str(item['port']) + ''
    try:
    # 执行SQL语句
    conn.execute(sql)
    # 获取所有记录列表
    results = conn.fetchall()
    if len(results) > 0: ## 存在
    #print("此ip已经存在@@@@@@@@@@@@")
    return True
    except:
    return False
    return False
    ##判断代理ip是否可用
    def proxyIpCheck(self,ip, port):
    server = ip + ":" + str(port)
    proxies = {'http': 'http://' + server, 'https': 'https://' + server}
    try:
    r = requests.get('https://www.baidu.com/', proxies=proxies, timeout=1)
    if (r.status_code == 200):
    return True
    else:
    return False
    except:
    return False

    2.6 测试爬虫 scrapy crwal 爬虫名

    3. 到此我们的 提取代理ip到数据库的 爬虫就写好了,接下来就是我们的任务定时器的编写

    #####在我们的爬虫项目的settings.py文件的同级目录新建一个start.py文件

    import os
    import pymysql
    import threading
    from settings import *
    ##定时器调用的run方法
    def run():
    clearIpPool()
    ### 循环定时器,不然执行一次就over了
    timer = threading.Timer(TIMER_STOP_TIME, run)
    timer.start()
    ########从这里开始执行
    print("ip池定时器开始,间隔时间:",str(TIMER_STOP_TIME),'s')
    ########开启定时器 TIMER_STOP_TIME为settings.py中的配置
    timer = threading.Timer(TIMER_STOP_TIME,run)
    timer.start()
    def clearIpPool():
    print("定时器执行,清扫ip数据库池")
    ## 利用 系统scrapy命令重新爬取代理ip
    os.system('scrapy crawl xiciSpider --nolog')
    # 遍历数据库 去除无用的代理ip
    removeUnSafeProxyFromDB()
    print("定时器执行完毕")
    ###### 查询数据库,找出无用的代理ip并且删除
    def removeUnSafeProxyFromDB():
    # 打开数据库连接
    db = pymysql.connect("39.108.112.254", "root", "abc123|||456", "xici")
    # 使用cursor()方法获取操作游标
    cursor = db.cursor()
    # SQL 查询语句
    sql = "SELECT * FROM t_ips"
    try:
    # 执行SQL语句
    cursor.execute(sql)
    # 获取所有记录列表
    results = cursor.fetchall()
    for row in results:
    id = row[0]
    ip = row[1]
    port = row[2]
    if proxyIpCheck(ip, str(port)) is False:
    print("此代理ip不可用,proxy:",ip, ':', str(port))
    ## 执行删除
    sql = "DELETE FROM t_ips WHERE id = "+str(id)
    # 执行SQL语句
    cursor.execute(sql)
    print(sql)
    # 提交修改
    db.commit()
    return
    except:
    print("Error: unable to fetch data")
    # 关闭数据库连接
    db.close()
    #####检测代理ip是否可用
    def proxyIpCheck(ip, port):
    server = ip + ":" + str(port)
    proxies = {'http': 'http://' + server, 'https': 'https://' + server}
    try:
    r = requests.get('https://www.baidu.com/', proxies=proxies, timeout=1)
    if (r.status_code == 200):
    return True
    else:
    return False
    except:
    return False
  • 相关阅读:
    SQL Server 2019安装及部署指南
    西门子1200PLC实用定位控制程序案例
    C#进行注册表项和键值操作
    上位机开发必备的一个实体类
    配置Internal Load balancer中VM的外网访问
    从中序后序遍历构造
    网络 | Linux ping任何ip均出现 Destination Host Unreachable 排查思路与方法
    Spring、Spring Framework、Spring Boot、Spring Cloud的区别
    Linux软件安装目录分类讲解
    APP嵌入H5时,软键盘处理(IOS)
  • 原文地址:https://www.cnblogs.com/jiguangdongtaiip/p/13572434.html
Copyright © 2020-2023  润新知