• 数据分析——用户分群分析


    针对用户群体的特征做分群分析,也有点类似RFM模型一样,不过可选的指标比只选择RFM三个指标更多,这里用的数据是航空公司用户的数据,数据指标包括

    下面上代码:

    import pandas as pd
    data = pd.read_csv('air_data.csv')
    #数据的一些基本情况
    data.describe()

    #数据空值情况,会发现一些属性的空值比较多
    data.isnull().sum().sort_values(ascending = False).head(10)

    空值最多的几个列如下:

    #查找每列数据的空值数量,最大值,最小值情况
    max_data = data.max()
    min_data = data.min()
    null_data = data.isnull().sum()
    data_count = pd.DataFrame({'max_data':max_data,'min_data':min_data,'null_data':null_data})

    #做数据清洗
    #丢弃票价为空值的的数据
    data = data[data['SUM_YR_1'].notnull()*data['SUM_YR_2'].notnull()]
    #data.dropna(subset=['SUM_YR_2','SUM_YR_1'])
    
    #只选择票价不为0,或者折扣
    index1 = data['SUM_YR_1'] != 0 
    index2 = data['SUM_YR_2'] != 0
    index3 = (data['SEG_KM_SUM'] == 0) & (data['avg_discount'] == 0) 
    data = data[index1|index2|index3] 
    #计算LRFMC五个指标
    data['FFP_DATE'] = pd.to_datetime(data['FFP_DATE'])
    data['LOAD_TIME'] = pd.to_datetime(data['LOAD_TIME'])
    data['L'] = data['LOAD_TIME'] - data['FFP_DATE']  
    data['R'] = data['LAST_TO_END']
    data['F'] = data['FLIGHT_COUNT']
    data['M'] = data['SEG_KM_SUM']
    data['C'] = data['avg_discount']
    finall_data = data.loc[:,['L','R','F','M','C']]
    finall_data['L'] = finall_data['L'].dt.days   #转换成天
    #标准化
    finall_data = (finall_data - finall_data.mean(axis=0))/finall_data.std()
    
    #聚类分析
    from sklearn.cluster import KMeans
    model = KMeans(n_clusters=5)
    model.fit(finall_data)
    model.cluster_centers_
    model.labels_
    finall_data['label'] = model.labels_  
    center = pd.DataFrame(center,columns=finall_data.columns[:-1])

    最后几类用户几个指标的分布如下,可以有针对性的做营销

  • 相关阅读:
    AC日记——可能的路径 51nod 1247
    AC日记——[国家集训队2011]旅游(宋方睿) cogs 1867
    近期将要学习的内容(flag)
    Cogs 734. [网络流24题] 方格取数问题(最大闭合子图)
    Cogs 746. [网络流24题] 骑士共存(最大独立集)
    Cogs 729. [网络流24题] 圆桌聚餐
    [网络流24题]飞行员配对方案问题
    Hdu 3549 Flow Problem(最大流)
    Cogs 14. [网络流24题] 搭配飞行员(二分图匹配)
    Cogs 728. [网络流24题] 最小路径覆盖问题
  • 原文地址:https://www.cnblogs.com/jiegege/p/8624094.html
Copyright © 2020-2023  润新知