- [网络流24题] 最小路径覆盖问题
★★☆ 输入文件:path3.in 输出文件:path3.out 评测插件
时间限制:1 s 内存限制:128 MB
算法实现题8-3 最小路径覆盖问题(习题8-13)
´问题描述:
给定有向图G=(V,E)。设P是G的一个简单路(顶点不相交)的集合。如果V中每个
顶点恰好在P的一条路上,则称P是G的一个路径覆盖。P中路径可以从V的任何一个顶
点开始,长度也是任意的,特别地,可以为0。G的最小路径覆盖是G的所含路径条数最少
的路径覆盖。
设计一个有效算法求一个有向无环图G的最小路径覆盖。
提示:
设V={1,2,… ,n},构造网络G1=(V1,E1)如下:
每条边的容量均为1。求网络G1的(x0,y0)最大流。
´编程任务:
对于给定的给定有向无环图G,编程找出G的一个最小路径覆盖。
´数据输入:
由文件input.txt提供输入数据。文件第1行有2个正整数n和m。n是给定有向无环图
G的顶点数,m是G的边数。接下来的m行,每行有2个正整数i 和j,表示一条有向边(i,j)。
´结果输出:
程序运行结束时,将最小路径覆盖输出到文件output.txt中。从第1行开始,每行输出
一条路径。文件的最后一行是最少路径数。
输入文件示例
input.txt
11 12
1 2
1 3
1 4
2 5
3 6
4 7
5 8
6 9
7 10
8 11
9 11
10 11
输出文件示例
output.txt
1 4 7 10 11
2 5 8
3 6 9
3
数据范围:
1<=n<=150,1<=m<=6000
/*
最小路径覆盖数=V-最大流.
然后拆点建图.
搞一个超级源点和汇点跑dinic.
输出的时候在残余网络里找贡献边.
恩就是这样.
*/
using namespace std;
struct data{int v,next,c;}e[MAXN*4];
int n,m,max1=1e9,ans,tot,cut=1,dis[MAXN*2],head[MAXN*2],next[MAXN*2];
bool in[MAXN*2];
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void add(int u,int v,int x)
{
e[++cut].v=v;
e[cut].c=x;
e[cut].next=head[u];
head[u]=cut;
}
bool bfs()
{
memset(dis,-1,sizeof dis);
queue<int>q;
q.push(0);
dis[0]=0;
while(!q.empty())
{
int u=q.front();q.pop();
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].v;
if(dis[v]==-1&&e[i].c)
{
dis[v]=dis[u]+1;
q.push(v);
}
}
}
return dis[n*2+1]!=-1;
}
int dfs(int u,int y)
{
if(u==n*2+1) return y;
int rest=0;
for(int i=head[u];i&&rest<y;i=e[i].next)
{
int v=e[i].v;
if(dis[v]==dis[u]+1&&e[i].c)
{
int x=dfs(v,min(e[i].c,y-rest));
rest+=x;
e[i].c-=x;
e[i^1].c+=x;
}
}
if(!rest) dis[u]=-1;
return rest;
}
void print()
{
for(int u=1;u<=n;u++)
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].v;
if(e[i].c==max1-1) in[v-n]=true,next[u]=v-n;
}
for(int i=1;i<=n;i++)
{
int x=i;
if(!in[x])
{
while(x) printf("%d ",x),x=next[x];
printf("
");
}
}
}
void dinic(int s,int t)
{
while(bfs()) ans+=dfs(s,max1);
print();
printf("%d
",n-ans);
return ;
}
int main()
{
freopen("path3.in","r",stdin);
freopen("path3.out","w",stdout);
int x,y;
n=read(),m=read();
for(int i=1;i<=n;i++) add(0,i,1),add(i,0,0);
for(int i=1;i<=n;i++) add(i+n,n*2+1,1),add(2*n+1,i+n,0);
for(int i=1;i<=m;i++)
{
x=read(),y=read();
add(x,y+n,max1),add(y+n,x,0);
}
dinic(0,n*2+1);
return 0;
}