• 统计学中特征函数理解和学习


    在概率论中,特征函数的益处体现在:

    1. 任意分布与它的特征函数一一对应;
    2. 两个独立随机变量之和的特征函数就是它们二者特征函数的积;
    3. 特征函数在零点附近收敛 == 分布函数弱收敛(Levi continuous theroem),要处理多个独立随机变量之和的分布,可以采取以下方式:

    如果随机变量各阶矩都存在,特征函数在0处求k阶导数可得到:

    因此,特征函数是随机变量的分布的不同表示形式。

    对于随机变量X的分布,用概率密度函数来描述:

     

    对应的概率密度函数如下:

     

    概率密度函数可以直观描述随机变量 X 的分布,特征函数也可以从另一个角度描述这个分布。

    特征(一个女博士为例)

     

    • 名字
    • 血型
    • 身高
    • 声音
    • 打扮
    • ……..

    以上特征如果都一样,那么:

    所有特征都相等 ==> 上述两幅图像是同一个人

    根据泰勒级数可知,两个函数f(x), g(x)的各阶导数相等的越多,那么这两个函数越相似:

    各阶倒数都相等 ==> f(x) = g(x)

    随机变量分布的特征

    • 期望µ
    • 方差σ2
    • 偏态SKewness
    • 峰态Kurtosis
    • ……..

    期望:

     

    方差:

     

    偏态:

     

    可见特征都可由各阶矩计算得出,直觉上可以有以下推论(其实还是有条件的,这里先忽略这些严格性,在实际应用中如下思考问题不大):

    各阶矩相等 ==> 各特征相等 ==> 分布相同

    特征函数

    随机变量X的特征函数定义为:

     

    泰勒级数展开:

     

    因此,可得:

     

    原来特征函数包含了分布函数的所有矩,也就是包含了分布函数的所有特征。

     

    所以,特征函数其实是随机变量X的分布的另外一种描述方式。

    特征函数是共轭傅立叶变换

     

    可见两者是共轭的关系:

     

    也就是说,特征函数是f(x)的共轭傅立叶变化,以下将特征函数当作傅立叶变换来理解。

    特征函数相当于换了一个坐标系

    直角坐标系下,圆的方程为: 

     

    在极坐标系下,同样的圆的方程为:

    同一个数学对象,在不同坐标系中,有不同的表达形式:

    傅立叶变换和直角坐标、极坐标的情况类似,相当于换了坐标系。

    矩形波在时域“坐标系”中的形状:

    代数形式如下:

    在频域“坐标系”中的图像如下:

     

    代数形式如下:

     

    也是同一个数学对象,在不同“坐标系”中,有不同的表达方式:

    所以,特征函数是把分布函数换了一个坐标系,因此是分布函数的另外一种表现形式:

    特征函数的好处:

    正如把直角坐标系换到极坐标系,可以获得计算上的便利。

    特征函数把分布函数换到另外一个坐标系,也可以获得一些计算的好处:

    (1)假如不知道分布函数,但是通过实验计算出了期望、方差、偏度、峰度等特征,那么可以用特征函数去代替分布函数;

    (2)两个分布函数的卷积:

     

    通过特征函数更换坐标系后,可以变为更容易计算的乘法:

     

    通过对 t 求导,可以简单求出各阶矩:

     

  • 相关阅读:
    【css基础修炼之路】— 谈谈元素的垂直水平居中
    git在linux安装步骤详解!!
    idea :不支持发行版本11问题
    centos7 升级gcc
    mysql--优化
    Docker安装
    使用idea从零编写SpringCloud项目-zuul
    使用idea从零编写SpringCloud项目-Hystrix
    使用idea从零编写SpringCloud项目-Feign
    使用idea从零编写SpringCloud项目-Ribbo
  • 原文地址:https://www.cnblogs.com/jeshy/p/10633852.html
Copyright © 2020-2023  润新知