• POJ 2553 The Bottom of a Graph


    The Bottom of a Graph
    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 7514   Accepted: 3083

    Description

    We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph. 
    Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1)
    Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from vv is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e.,bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.

    Input

    The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.

    Output

    For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.

    Sample Input

    3 3
    1 3 2 3 3 1
    2 1
    1 2
    0
    

    Sample Output

    1 3
    2
    

    Source

     
     
    1. 题目大意      若节点V所能到达的点{w},都能反过来到达v,那我们称v是sink。  
    2. 强连通+缩点  
    3. 就是求极大连通分量,最后统计出度为0的点,排序后输出初度为0的分量包含的每一个点。  
    4. 不管怎么样都会存在一个出度为0的点,所以说If the bottom is empty, print empty line是没有用的。
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    
    using namespace std;
    
    const int VM=5010;
    const int INF=999999999;
    
    struct Edge{
        int to,nxt;
    }edge[VM*VM];
    
    int n,m,cnt,dep,top,atype,head[VM];
    int dfn[VM],low[VM],vis[VM],indeg[VM],outdeg[VM],belong[VM];
    int stack[VM],res[VM];
    
    void addedge(int cu,int cv){
        edge[cnt].to=cv;
        edge[cnt].nxt=head[cu];
        head[cu]=cnt++;
    }
    
    void Init(){
        cnt=0,atype=0,dep=0,top=0;
        memset(head,-1,sizeof(head));
        memset(vis,0,sizeof(vis));
        memset(low,0,sizeof(low));
        memset(dfn,0,sizeof(dfn));
        memset(indeg,0,sizeof(indeg));
        memset(outdeg,0,sizeof(outdeg));
        memset(belong,0,sizeof(belong));
    }
    
    void Tarjan(int u){
        dfn[u]=low[u]=++dep;
        stack[top++]=u;
        vis[u]=1;
        for(int i=head[u];i!=-1;i=edge[i].nxt){
            int v=edge[i].to;
            if(!dfn[v]){
                Tarjan(v);
                low[u]=min(low[u],low[v]);
            }else if(vis[v])
                low[u]=min(low[u],dfn[v]);
        }
        int j;
        if(dfn[u]==low[u]){
            atype++;
            do{
                j=stack[--top];
                belong[j]=atype;
                vis[j]=0;
            }while(u!=j);
        }
    }
    
    int main(){
    
        //freopen("input.txt","r",stdin);
    
        while(~scanf("%d",&n) && n){
            Init();
            scanf("%d",&m);
            int u,v;
            while(m--){
                scanf("%d%d",&u,&v);
                addedge(u,v);
            }
            for(int i=1;i<=n;i++)
                if(!dfn[i])
                    Tarjan(i);
            int tmp;
            for(int i=1;i<=n;i++){
                tmp=belong[i];
                for(int j=head[i];j!=-1;j=edge[j].nxt){
                    int v=edge[j].to;
                    if(belong[i]!=belong[v])
                        outdeg[belong[i]]++;
                }
            }
            cnt=0;
            for(int i=1;i<=atype;i++)
                if(outdeg[i]==0)
                    for(int j=1;j<=n;j++)
                        if(belong[j]==i)
                            res[cnt++]=j;
            sort(res,res+cnt);
            if(cnt!=0){
                for(int i=0;i<cnt-1;i++)
                    printf("%d ",res[i]);
                printf("%d\n",res[cnt-1]);
            }else
                printf("\n");
        }
        return 0;
    }
  • 相关阅读:
    人的一生为什么要努力 &1
    数据库_数据库系统概论
    电子商务安全
    虚拟专用网技术
    人的一生为什么要努力
    数据备份与恢复技术
    入侵检测技术
    简历模板连接
    防火墙技术
    字节与位
  • 原文地址:https://www.cnblogs.com/jackge/p/3077549.html
Copyright © 2020-2023  润新知