1. 归并排序
归并排序(Merge sort),是创建在归并操作上的一种有效的排序算法,效率为O(nlogn)。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,且各层分治递归可以同时进行。【详情见维基百科】
分类 | 排序算法 |
---|---|
数据结构 | 数组 |
最坏时间复杂度 | |
最优时间复杂度 | |
平均时间复杂度 | |
最坏空间复杂度 |
2. 归并排序(非递归版)C++ 实现
1 #include<iostream> 2 #include<vector> 3 using namespace std; 4 5 void MergeSort(vector<int> &array){ 6 int len = array.size(); 7 vector<int> temp(len); 8 9 for(int seg = 1; seg <= len; seg = 2 * seg){ 10 // 将array中相邻长度为seg的子序列两两归并到temp 11 for(int start = 0; start <= len; start = start + 2 * seg){ 12 // 确定归并范围 low, mid, high 13 int low = start; 14 int mid = min(len - 1, start + seg - 1); 15 int high = min(len - 1, start + 2 * seg - 1); 16 17 int start1 = low, end1 = mid; 18 int start2 = mid+1, end2 = high; 19 int idx = low; 20 21 // 将array[low...mid]和array[mid+1...high]归并到temp[low...high] 22 while(start1 <= end1 && start2 <= end2) 23 temp[idx++] = array[start1] < array[start2]? array[start1++] : array[start2++]; 24 while(start1 <= end1) 25 temp[idx++] = array[start1++]; 26 while(start2 <= end2) 27 temp[idx++] = array[start2++]; 28 } 29 // 将temp赋值给array,从新进行下一轮 30 int i = 0; 31 for(vector<int>::iterator it = temp.begin(); it != temp.end(); it++){ 32 array[i++] = *it; 33 } 34 } 35 } 36 37 bool Check(vector<int> arr){ 38 bool flag = true; 39 for(int i=1; i<arr.size(); i++) 40 flag = flag && (arr[i]-arr[i-1] >= 0); 41 return flag; 42 } 43 44 int main(int argc, char const *argv[]) 45 { 46 vector<int> arr = {5, 9, 0, 1, 3, 6, 4, 8, 2, 7}; 47 48 MergeSort(arr); 49 for(auto &it : arr) 50 cout<<it<<' '; 51 cout<<endl; 52 53 // 判断返回结果的正确性 54 bool isInOrder = Check(arr); 55 if (isInOrder) 56 cout<<"true"<<endl; 57 else 58 cout<<"false"<<endl; 59 return 0; 60 }
3. 使用大量随机数据测试
#include<iostream> #include<vector> #include<stdlib.h> #include<time.h> using namespace std; void MergeSort(vector<int> &array) { int len = array.size(); vector<int> temp(len); for (int seg = 1; seg < len; seg = 2 * seg) { for (int start = 0; start < len; start += 2 * seg) { int low = start; int mid = min(start + seg - 1, len-1); int high = min(start + 2 * seg-1, len-1); int i = low, j = mid + 1; for(int k = low; k <= high; k++) temp[k] = array[k]; for(int idx = low; idx <= high; idx++){ if(i > mid) array[idx] = temp[j++]; else if(j > high) array[idx] = temp[i++]; else if(temp[i] < temp[j]) array[idx] = temp[i++]; else array[idx] = temp[j++]; } } } } // 判断array是否有序 bool isOrder(vector<int> &array){ for(int i = 1; i < array.size(); i++){ if(array[i] < array[i-1]) return false; } return true; } // 生成n个介于min,max之间的整型数 vector<int> RAND(int max, int min, int n) { vector<int> res; srand(time(NULL)); // 注释该行之后,每次生成的随机数都一样 for(int i = 0; i < n; ++i) { int u = (double)rand() / (RAND_MAX + 1) * (max - min) + min; res.push_back(u); } return res; } // 使用20000000个介于1,10000之间的数据进行测试 int main(int argc, char const *argv[]) { vector<int> a = RAND(1, 10000, 20000000); clock_t start = clock(); MergeSort(a); clock_t end = clock(); cout << "Time goes: " << (double)(end - start) / CLOCKS_PER_SEC << "sec" << endl; bool sorted = isOrder(a); cout<<sorted<<endl; return 0; }
运行结果:对2千万随机数据排序耗时13.516sec
Time goes: 13.516sec 1 [Finished in 15.7s]