一、何谓Atomic?
Atomic一词跟原子有点关系,后者曾被人认为是最小物质的单位。计算机中的Atomic是指不能分割成若干部分的意思。如果一段代码被认为是Atomic,则表示这段代码在执行过程中,是不能被中断的。通常来说,原子指令由硬件提供,供软件来实现原子方法(某个线程进入该方法后,就不会被中断,直到其执行完成)
在x86 平台上,CPU提供了在指令执行期间对总线加锁的手段。CPU芯片上有一条引线#HLOCK pin,如果汇编语言的程序中在一条指令前面加上前缀"LOCK",经过汇编以后的机器代码就使CPU在执行这条指令的时候把#HLOCK pin的电位拉低,持续到这条指令结束时放开,从而把总线锁住,这样同一总线上别的CPU就暂时不能通过总线访问内存了,保证了这条指令在多处理器环境中的原子性。
二、JDK1.5的原子包:java.util.concurrent.atomic
这个包里面提供了一组原子类。其基本的特性就是在多线程环境下,当有多个线程同时执行这些类的实例包含的方法时,具有排他性,即当某个线程进入方法,执行其中的指令时,不会被其他线程打断,而别的线程就像自旋锁一样,一直等到该方法执行完成,才由JVM从等待队列中选择一个另一个线程进入,这只是一种逻辑上的理解。实际上是借助硬件的相关指令来实现的,不会阻塞线程(synchronized 会把别的等待的线程挂起)(或者说只是在硬件级别上阻塞了)。
其中的类可以分成4组
- AtomicBoolean,AtomicInteger,AtomicLong,AtomicReference
- AtomicIntegerArray,AtomicLongArray
- AtomicLongFieldUpdater,AtomicIntegerFieldUpdater,AtomicReferenceFieldUpdater
- AtomicMarkableReference,AtomicStampedReference,AtomicReferenceArray
Atomic类的作用
- 使得让对单一数据的操作,实现了原子化
- 使用Atomic类构建复杂的,无需阻塞的代码
- 访问对2个或2个以上的atomic变量(或者对单个atomic变量进行2次或2次以上的操作)通常认为是需要同步的,以达到让这些操作能被作为一个原子单元。
2.1 AtomicBoolean , AtomicInteger, AtomicLong, AtomicReference
这四种基本类型用来处理布尔,整数,长整数,对象四种数据。
- 构造函数(两个构造函数)
- 默认的构造函数:初始化的数据分别是false,0,0,null
- 带参构造函数:参数为初始化的数据
- set( )和get( )方法:可以原子地设定和获取atomic的数据。类似于volatile,保证数据会在主存中设置或读取
- getAndSet( )方法
- 原子的将变量设定为新数据,同时返回先前的旧数据
- 其本质是get( )操作,然后做set( )操作。尽管这2个操作都是atomic,但是他们合并在一起的时候,就不是atomic。在Java的源程序的级别上,如果不依赖synchronized的机制来完成这个工作,是不可能的。只有依靠native方法才可以。
- compareAndSet( ) 和weakCompareAndSet( )方法
- 这两个方法都是conditional modifier方法。这2个方法接受2个参数,一个是期望数据(expected),一个是新数据(new);如果atomic里面的数据和期望数据一致,则将新数据设定给atomic的数据,返回true,表明成功;否则就不设定,并返回false。
- 对于AtomicInteger、AtomicLong还提供了一些特别的方法。getAndIncrement( )、incrementAndGet( )、getAndDecrement( )、decrementAndGet ( )、addAndGet( )、getAndAdd( )以实现一些加法,减法原子操作。(注意 --i、++i不是原子操作,其中包含有3个操作步骤:第一步,读取i;第二步,加1或减1;第三步:写回内存)
2.1.1 1个例子-使用AtomicReference创建线程安全的堆栈
1 public class LinkedStack<T> { 2 3 private AtomicReference<Node<T>> stacks = new AtomicReference<Node<T>>(); 4 5 public T push(T e) { 6 Node<T> oldNode, newNode; 7 while (true) { //这里的处理非常的特别,也是必须如此的。 8 oldNode = stacks.get(); 9 newNode = new Node<T>(e, oldNode); 10 if (stacks.compareAndSet(oldNode, newNode)) { 11 return e; 12 } 13 } 14 } 15 16 public T pop() { 17 Node<T> oldNode, newNode; 18 while (true) { 19 oldNode = stacks.get(); 20 newNode = oldNode.next; 21 if (stacks.compareAndSet(oldNode, newNode)) { 22 return oldNode.object; 23 } 24 } 25 } 26 27 private static final class Node<T> { 28 private T object; 29 30 private Node<T> next; 31 32 private Node(T object, Node<T> next) { 33 this.object = object; 34 this.next = next; 35 } 36 } 37 }