• HDU-4609 3-idiots FFT


    HDU-4609 3-idiots FFT

    题意

    给定(n) 根木棍,每根木棍有一长度(a[i]) ,问任意选出三根木棍,可以组成三角形的概率

    [T leq 100,3leq n leq 10^5 ,1leq a_i leq 10^5 ]

    分析

    此题属于(FFT)入门模板题

    这题刚开始看有点像是生成函数(好像就是

    如果暴力枚举两根可能组成的长度,显然(n^2) 的复杂度不够

    我们可以把问题抽象成两个多项式相乘,最后乘出来的指数或者说第几项就可以表示出能够组成的长度,系数就表示个数。

    事实上就是在求卷积,也就是(FFT) 的工作。

    注意实现上要删掉两个相同的组成,以及对剩下的除以2

    特别注意(FFT) 传入的(len) 必须是(2^k)

    代码

    struct Complex {
        double x, y;
        Complex(double _x = 0.0, double _y = 0.0) {
            x = _x;
            y = _y;
        }
        Complex operator - (const Complex& b) const {
            return Complex(x - b.x, y - b.y);
        }
        Complex operator + (const Complex& b) const {
            return Complex(x + b.x, y + b.y);
        }
        Complex operator * (const Complex& b) const {
            return Complex(x * b.x - b.y * y, x * b.y + y * b.x);
        }
    };
    
    void change(Complex y[], int len) {
        int k;
        for (int i = 1, j = len / 2; i < len - 1; i++) {
            if (i < j) swap(y[i], y[j]);
            k = len / 2;
            while (j >= k) {
                j -= k;
                k /= 2;
            }
            if (j < k) j += k;
        }
    }
    
    void fft(Complex y[], int len, int on) {
        change(y, len);
        for (int h = 2; h <= len; h <<= 1) {
            Complex wn(cos(-on * 2 * PI / h), sin(-on * 2 * PI / h));
            for (int j = 0; j < len; j += h) {
                Complex w(1, 0);
                for (int k = j; k < j + h / 2; k++) {
                    Complex u = y[k];
                    Complex t = w * y[k + h / 2];
                    y[k] = u + t;
                    y[k + h / 2] = u - t;
                    w = w * wn;
                }
            }
        }
        if (on == -1) {
            for (int i = 0; i < len; i++)
                y[i].x /= len;
        }
    }
    
    Complex x[maxn << 2];
    ll num[maxn << 2];
    ll sum[maxn << 2];
    int a[maxn];
    
    int main() {
        int T = readint();
        int n;
        while (T--) {
            n = readint();
            memset(num, 0, sizeof num);
            for (int i = 0; i < n; i++) a[i] = readint(), num[a[i]]++;
            sort(a, a + n);
            int len1 = a[n - 1] + 1;
            int len = 1;
            while (len < 2 * len1) len <<= 1;
            for (int i = 0; i < len1; i++) x[i] = Complex(num[i], 0);
            for (int i = len1; i < len; i++) x[i] = Complex(0, 0);
            fft(x, len, 1);
            for (int i = 0; i < len; i++) x[i] = x[i] * x[i];
            fft(x, len, -1);
            for (int i = 0; i < len; i++) num[i] = (ll)(x[i].x + 0.5);
            len = 2 * a[n - 1];
            for (int i = 0; i < n; i++) num[a[i] + a[i]]--;
            for (int i = 1; i <= len; i++) num[i] /= 2;
            sum[0] = 0;
            for (int i = 1; i <= len; i++) sum[i] = sum[i - 1] + num[i];
            ll cnt = 0;
            for (int i = 0; i < n; i++) cnt += sum[a[i]];
            ll tot = (ll)n * (n - 1) * (n - 2) / 6;
            printf("%.7f
    ", 1.0 - 1.0 * cnt / tot);
        }
    }
    
  • 相关阅读:
    树状数组基础
    Color the ball HDU1556
    敌兵布阵 HDU1166
    线段树基础
    T9 HDU1298
    7-6 Bandwidth UVA140
    测试方法:
    测试过程:
    爬天极网美女图片缩略图:
    爬天极网美女预览图版一:
  • 原文地址:https://www.cnblogs.com/hznumqf/p/13596509.html
Copyright © 2020-2023  润新知