• 洛谷P4211 LCA


    题意:多次询问,每次求点的标号在[l, r]之间的所有点到点z的lca的深度。

    解:看到这题有没有想到某一道很熟悉的题?紫妹和幽香是17岁的少女,喜欢可爱的东西......

    显然这就是开店的超级无敌弱化版......直接套用做法就行了。

    记得对"爱你一生一世"取模。(滑稽)

      1 #include <cstdio>
      2 #include <algorithm>
      3 
      4 typedef long long LL;
      5 const int N = 50010, M = 5000010;
      6 
      7 struct Edge {
      8     int nex, v;
      9 }edge[N]; int tp;
     10 
     11 int e[N], top[N], num, fa[N], siz[N], son[N], d[N], n, pos[N];
     12 LL sum[M];
     13 int rt[N], tot, ls[M], rs[M], tag[M];
     14 
     15 inline void adde(int x, int y) {
     16     tp++;
     17     edge[tp].v = y;
     18     edge[tp].nex = e[x];
     19     e[x] = tp;
     20     return;
     21 }
     22 
     23 void DFS1(int x) { // get siz fa son d 
     24     siz[x] = 1;
     25     d[x] = d[fa[x]] + 1;
     26     for(int i = e[x]; i; i = edge[i].nex) {
     27         int y = edge[i].v;
     28         fa[y] = x;
     29         DFS1(y);
     30         siz[x] += siz[y];
     31         if(siz[y] > siz[son[x]]) {
     32             son[x] = y;
     33         }
     34     }
     35     return;
     36 }
     37 
     38 void DFS2(int x, int f) { // get pos id top
     39     top[x] = f;
     40     pos[x] = ++num;
     41     if(son[x]) {
     42         DFS2(son[x], f);
     43     }
     44     for(int i = e[x]; i; i = edge[i].nex) {
     45         int y = edge[i].v;
     46         if(y == son[x]) {
     47             continue;
     48         }
     49         DFS2(y, y);
     50     }
     51     return;
     52 }
     53 
     54 void add(int x, int &y, int L, int R, int l, int r) {
     55     if(!y || x == y) {
     56         y = ++tot;
     57         sum[y] = sum[x];
     58         tag[y] = tag[x];
     59         ls[y] = ls[x];
     60         rs[y] = rs[x];
     61     }
     62     sum[y] += std::min(R, r) - std::max(L, l) + 1;
     63     if(L <= l && r <= R) {
     64         tag[y]++;
     65         return;
     66     }
     67     int mid = (l + r) >> 1;
     68     if(L <= mid) {
     69         add(ls[x], ls[y], L, R, l, mid);
     70     }
     71     if(mid < R) {
     72         add(rs[x], rs[y], L, R, mid + 1, r);
     73     }
     74     return;
     75 }
     76 
     77 LL ask(int x, int y, int L, int R, int l, int r, int vx, int vy) {
     78     if(L <= l && r <= R) {
     79         return sum[y] - sum[x] + 1ll * (vy - vx) * (r - l + 1);
     80     }
     81     vx += tag[x];
     82     vy += tag[y];
     83     int mid = (l + r) >> 1;
     84     LL ans = 0;
     85     if(L <= mid) {
     86         ans += ask(ls[x], ls[y], L, R, l, mid, vx, vy);
     87     }
     88     if(mid < R) {
     89         ans += ask(rs[x], rs[y], L, R, mid + 1, r, vx, vy);
     90     } 
     91     return ans;
     92 }
     93 
     94 inline void add(int x, int time) {
     95     while(x) {
     96         add(rt[time - 1], rt[time], pos[top[x]], pos[x], 1, n);
     97         x = fa[top[x]];
     98     }
     99     return;
    100 }
    101 
    102 inline LL ask(int x, int y, int z) {
    103     LL ans = 0;
    104     while(z) {
    105         ans += ask(rt[x - 1], rt[y], pos[top[z]], pos[z], 1, n, 0, 0);
    106         z = fa[top[z]];  
    107     }
    108     return ans;
    109 }
    110 
    111 int main() {
    112     int q;
    113     scanf("%d%d", &n, &q);
    114     for(int i = 2, x; i <= n; i++) {
    115         scanf("%d", &x);
    116         adde(x + 1, i);
    117     }
    118     DFS1(1);
    119     DFS2(1, 1);
    120     for(int i = 1; i <= n; i++) {
    121         add(i, i);
    122     }
    123     for(int i = 1, x, y, z; i <= q; i++) {
    124         scanf("%d%d%d", &x, &y, &z);
    125         LL t = ask(x + 1, y + 1, z + 1);
    126         printf("%lld
    ", t % 201314);
    127     }
    128     return 0;
    129 }
    AC代码
  • 相关阅读:
    终极快速排序
    微服务(Microservices)【翻译】
    从Uber微服务看最佳实践如何炼成?
    请不要在“微服务”的狂热中迷失自我!
    笔记_第四章_04
    笔记_第三章_03
    笔记_第二章_02
    笔记_第一章_01
    jQuery简单入门(五)
    jQuery简单入门(四)
  • 原文地址:https://www.cnblogs.com/huyufeifei/p/10356033.html
Copyright © 2020-2023  润新知