• AtCoder3857:Median Sum (Bitset优化背包&&对称性求中位数)


    Median Sum

    You are given N integers A1A2, ..., AN.

    Consider the sums of all non-empty subsequences of A. There are 2N−1 such sums, an odd number.

    Let the list of these sums in non-decreasing order be S1S2, ..., S2N−1.

    Find the median of this list, S2N−1.

    Constraints

     

    • 1≤N≤2000
    • 1≤Ai≤2000
    • All input values are integers.

    Input

     

    Input is given from Standard Input in the following format:

    N
    A1 A2  AN
    

    Output

     

    Print the median of the sorted list of the sums of all non-empty subsequences of A.

    Sample Input 1

     

    3
    1 2 1
    

    Sample Output 1

     

    2
    

    In this case, S=(1,1,2,2,3,3,4). Its median is S4=2.

    Sample Input 2

     

    1
    58
    

    Sample Output 2

     

    58
    

    In this case, S=(58).

    题意:给定N个数,有2^N-1种非空组合,求这些组合的和排序后的中位数。

    思路:由对称性,知道中位数略大于Sum/2,所以我们从(Sum+1)/2后面所有的可能中,选择最近的一个。(证明见下面。)

    具体实现:需要得到背包结果有哪些可能性,这个只需要Bitset加速一下即可得到。

    证明:见前辈写的,很清晰,只要利用对称性即可。ZZZZone

    #include<bitset>
    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    const int maxn=2002;
    bitset<maxn*maxn+10>s;
    int main()
    {
        int N,x,ans;
        while(~scanf("%d",&N)){
            s.reset(); ans=0;
            s[0]=1;
            for(int i=1;i<=N;i++){
                scanf("%d",&x);
                s|=(s<<x);
                ans+=x;
            }
            for(int i=(ans+1)/2;;i++){
                if(s[i]){
                   printf("%d
    ",i);
                   break;
                }
            }
        }
        return 0;
    }
  • 相关阅读:
    转--- 一些概念不错的理解
    python 生产者 --- 消费者
    python GUI 之 tkinter
    读DataSnap源代码(二)
    读DataSnap源代码(一)
    FireDAC探索 (二)
    FireDAC内部初探
    C++Builder XE7 中“匿名”方法实现
    DelphiXE7 Datasnap TDSClientCallbackChannelManager内部实现初探
    C++ Builder使用VC DLL
  • 原文地址:https://www.cnblogs.com/hua-dong/p/8540923.html
Copyright © 2020-2023  润新知